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Introduction

1. Résumé de la thèse

Un plongement grossièrement lipschitzien d'un espace métriqueM dans un espace métrique
N est une application bi-lipschitzienne aux grandes distances (voir le chapitre 1 pour les
dé�nitions précises). Dans le papier précurseur [95], M. Ribe a montré que si un espace de
Banach X se plonge de façon grossièrement lipschitzienne dans un espace de Banach Y ,
alorsX est �niment crûment représentable dans Y , ce qui signi�e que tous les sous-espaces
de dimension �nie de X sont linéairement isomorphes, avec une distorsion uniforme, aux
sous-espaces de Y . En d'autres termes, les propriétés locales des espaces de Banach, qui
sont les propriétés isomorphiques de leurs sous-espaces de dimension �nie (comme le type,
le cotype, la super-ré�exivité, . . . ) sont préservées par plongements grossièrement lips-
chitziens. Ce résultat a lancé ce que l'on appelle désormais le programme de Ribe, qui a
pour but de trouver des caractérisations purement métriques aux propriétés locales des
espaces de Banach. Nous faisons référence à [81] et [5] pour une discussion sur les origines
et motivations de ce programme, ainsi qu'une présentation des résultats les plus frappants
dans cette direction. Au cours de ces vingt dernières années, la structure asymptotique
des espaces de Banach qui, très vaguement parlant, est celle des sous-espaces de codimen-
sion �nie ou des propriétés des suites ou arbres faiblement nuls, s'est aussi révélée être
centrale dans la géométrie non-linéaire des espaces de Banach. Nous renvoyons le lecteur
aux travaux fondateurs de N. Kalton ([65] et [63] par exemple) et au panorama [47] ainsi
que leurs références. Cependant, malgré l'accumulation d'un certain nombre de résultats
de stabilité conséquents, il n'y a pas d'analogue du théorème de rigidité de Ribe dans
le cadre de la géométrie asymptotique des espaces de Banach. Chaque nouveau résultat
demande un argument ad hoc.
Les parties linéaire et non-linéaire de cette thèse aborderont chacune deux types de ques-
tions di�érents. La première partie linéaire consistera en l'étude �ne de quatre propriétés
asymptotiques de lissité, notées Tp,Ap,Np et Pp, en mettant l'accent sur des caractérisa-
tions par renormage et le problème des trois-espaces. Ces caractérisations par renormage
et le principe de Gorelik nous emmèneront vers des résultats non-linéaires en nous perme-
ttant d'exhiber deux nouvelles propriétés qui sont stables par équivalences grossièrement
lipschitziennes. Notre deuxième thème non-linéaire sera l'étude de propriétés de con-
centration pour des applications lipschitziennes dé�nies sur une famille de graphes, qui
peuvent empêcher le plongement grossièrement lipschitzien d'un espace de Banach dans
un autre. En�n, la deuxième partie linéaire consistera à donner un analogue asymptotique
d'un célèbre résultat de Pisier impliquant plusieurs notions de types et la B-convexité.

Décrivons maintenant en détails la structure de cette thèse.

3



4 Résumé de la thèse

Chapitre 1 : Applications non-linéaires et propriétés asympto-
tiques des espaces de Banach.

Commençons par mentionner que la deuxième section de ce chapitre est tirée d'un
travail conjoint avec R. Causey et G. Lancien (voir [30]).

Dans ce premier chapitre, nous dé�nissons les applications non-linéaires qui apparais-
sent dans cette thèse et, après quelques rappels sur l'indice de Szlenk, nous décrivons
en détails quatre propriétés di�érentes en lien avec la lissité asymptotique uniforme des
espaces de Banach, que nous noterons Tp,Ap,Np, et Pp. Nous commencerons tout d'abord
par donner leurs dé�nitions en termes de jeux à deux joueurs sur un espace de Banach X.

Ensuite, nous donnons les caractérisations principales de ces propriétés qui font inter-
venir des majorations de type `p pour des arbres faiblement nuls, l'existence de normes
équivalentes asymptotiquement uniformément lisses avec de bonnes estimations quantita-
tives et, dualement, la comportement de l'indice de Szlenk.

Nous supposons, pour cette introduction, que ce que nous voulons dire par arbres
faiblement nuls est compréhensible. Nous pouvons alors énoncer le résultat principal du
chapitre 1. Il donne plusieurs caractérisations de la propriété Ap. La caractérisation avec
le renormage est complètement nouvelle et sera cruciale pour les résultats de stabilité
non-linéaire.

Théorème (avec R. Causey et G. Lancien). Soient 1 < p < ∞ et q l'exposant conjugué
de p. Soit X un espace de Banach. Les assertions suivantes sont équivalentes

(i) X ∈ Ap.

(ii) Il existe une constante c > 0 telle que pour toute base de voisinages faibles D de 0
dans X, tout n ∈ N, et tout arbre faiblement nul (xt)t∈D6n dans la boule unité de
X, il existe t ∈ Dn tel que

∀a = (ai)
n
i=1 ∈ `np ,

∥∥∥ n∑
i=1

aixt|i

∥∥∥ ≤ c‖a‖p.

(iii) Il existe une constante M ≥ 1 et une constante C > 0 telles que pour tout τ ∈ (0, 1],
il existe une norme | | sur X véri�ant M−1‖x‖X ≤ |x| ≤M‖x‖X pour tout x ∈ X
et

∀σ ≥ τ, ρ| |(σ) ≤ Cσp.

(iv) X a un indice de Szlenk q-sommable.

Rappelons qu'une propriété (P ) concernant les espaces de Banach est séparablement
déterminée si un espace de Banach X a (P ) si et seulement si tous ses sous-espaces
séparables ont (P ). Nous terminerons ce chapitre par une preuve courte et uni�ée du fait
que les quatre propriétés introduites sont séparablement déterminées.

Chapitre 2 : Graphes de Hamming et propriétés de concentration
dans des espaces de Banach non-quasi-ré�exifs.

En 2008, a�n de montrer que Lp(0, 1) n'est pas uniformément homéomorphe à `p⊕ `2

pour p ∈ (1,∞)\{2}, Kalton et Randrianarivony [67] ont introduit une nouvelle technique



Résumé de la thèse 5

s'appuyant sur une certaine famille de graphes et des idées de lissité asymptotique. Plus
spéci�quement, ils ont introduit une propriété de concentration pour les applications
lipschitziennes dé�nies sur les graphes de Hamming à valeurs dans un espace de Banach
ré�exif asymptotiquement uniformément lisse (AUS) X, qui empêche tout plongement
grossièrement lipschitzien de certains espaces dans X.

Leur résultat fut utilisé par Kalton lui-même pour en déduire des informations sur les
modèles étalés d'un espace qui se plonge de façon grossièrement lipschitzienne dans un
espace ré�exif AUS (cf [65]), et a été étendu au cadre quasi-ré�exif par Lancien et Raja
[74], qui ont introduit une propriété de concentration plus faible. Peu après, Causey [28]
a montré que cette même propriété de concentration plus faible se retrouve également
chez les espaces quasi-ré�exifs admettant des majorations de type `p pour les arbres (plus
précisément, chez les espaces quasi-ré�exifs qui appartiennent à la classe Np introduite
dans le chapitre 1).

L'objectif de ce chapitre est de démarrer une étude générale de ces propriétés de
concentration, ainsi que de nouvelles. En particulier, nous nous poserons la question
de leur stabilité par des sommes indexées par certains espaces de Banach. Ceci nous
permettra d'obtenir des exemples non-quasi-ré�exifs.
Notre résultat principal sera le suivant.

Théorème. Soient p ∈]1,∞[, λ > 0 et (Xn)n∈N une suite d'espaces de Banach avec la
propriété λ-HICp,d.
Soit E un espace de Banach ré�exif avec une base normalisée 1-inconditionnelle et p-
convexe (en)n∈N (voir la �n de l'introduction pour la dé�nition), avec constante de con-
vexité 1.
Alors X =

(∑
n∈NXn

)
E
a la propriété (λ+ 2 + ε)-HICp,d pour tout ε > 0.

La propriété λ-HICp,d est un ra�nement de la propriété λ-HICp, d'abord considérée par
Lancien et Raja : un espace X a la propriété λ-HICp si, pour toute fonction lipschitzienne
f : ([N]k, dH) → X, il existe n,m en position entrelacée tels que ‖f(n) − f(m)‖ ≤
λk1/pLip(f).

Par conséquent, une somme `q d'un espace de Banach quasi-ré�exif (voir la �n de
l'introduction pour la dé�nition) satisfaisant des majorations de type `p pour les arbres,
1 < q, p < ∞, ne peut contenir de copie équi-lipschitzienne des graphes de Hamming.
C'est une généralisation du résultat de Causey mentionné précédemment (cf [28]), qui le
prouve pour les espaces de Banach quasi-ré�exifs satisfaisant des majorations de type `p
pour les arbres. C'est le premier résultat de ce type pour les espaces de Banach non-
quasi-ré�exifs.

Pour le montrer, on introduit les notions et la terminologie utilisées par la suite dans
la première section tandis que la section 2 est dédiée à la preuve elle-même.

Récemment, Baudier, Lancien, Motakis and Schlumprecht [11] ont prouvé que tout
espace de Banach quasi-re�exif asymptotiquement c0 (voir la section 3 pour la dé�nition
d'asymptotiquement c0) a la propriété HIC∞. Même si nous ne savons toujours pas si
un espace qui a cette propriété est nécessairement quasi-ré�exif, nous prouvons dans la
dernière section de ce chapitre qu'un espace avec la propriété HIC∞ est nécessairement
asymptotiquement c0. En particulier, l'espace T ∗(T ∗), où T ∗ est l'espace de Banach orig-
inel construit par Tsirelson dans [98], ne peut avoir cette propriété de concentration.
On donne également un exemple dans le cadre non-quasi-ré�exif d'un espace dual, sé-
parable et asymptotiquement c0 qui ne contient pas de copie lipschitzienne de `1 ou c0 et
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qui n'a aucune des propriétés de concentration introduites dans ce chapitre. Cet exemple
s'appuie sur une généralisation de la construction des espaces de Lindenstrauss, que l'on
doit à Schlumprecht.

Chapitre 3 : Propriétés des trois-espaces et stabilités non-linéaires.

Ce chapitre est en deux parties et est basé sur un travail conjoint avec R. Causey et
G. Lancien [30]. La première est dédiée à l'étude du problème des trois-espaces pour les
propriétés Tp,Ap,Np et Pp, introduites dans le premier chapitre. La deuxième est quant
à elle dédiée à des résultats de stabilité non-linéaire.

Rappelons qu'une propriété (P ) d'espaces de Banach est une Propriété des trois-
espaces (ou 3SP en abrégé) si elle passe aux quotients et sous-espaces et qu'un espace
de Banach X a (P ) dès lors qu'il admet un sous-espace Y tel que Y et X/Y ont tous
les deux (P ). Les propriétés Tp,Ap,Np et Pp passent assez simplement aux sous-espaces,
quotients ou espaces isomorphes et il a été prouvé dans [29] que Pp est une 3SP. Pour
commencer, nous pro�tons de ce chapitre pour fournir un argument plus direct pour le
montrer. Ensuite, avec un seul exemple, nous montrons

Théorème. Soit p ∈ (1,∞). Alors Tp,Ap, et Np ne sont pas des propriétés des trois-
espaces.

En�n, et ceci sera notre résultat principal concernant les propriétés des trois-espaces,
nous montrons

Théorème. Admettre un renormage asymptotiquement uniformément plat (propriété T∞)
et avoir un indice de Szlenk sommable (propriété A∞) sont des propriétés des trois-espaces.

Un réseau dans un espace métrique (M,d) est un sous-ensemble M de M tel qu'il
existe 0 < a < b de sorte que pour tous z 6= z′ dansM, d(z, z′) ≥ a et pour tout x dans
M , d(x,M) < b. Pour que ce soit plus simple dans cette introduction, utilisons le fait
que deux espaces de Banach X et Y de dimension in�nie sont grossièrement Lipschitz
équivalents si et seulement si on peut trouver deux réseaux de X et Y qui sont Lipschitz
équivalents. La dé�nition précise d'équivalence grossièrement lipschitzienne sera donnée
dans le chapitre 1 et peut-être décrite approximativement comme une équivalence lips-
chitzienne aux grandes distances. Dans [45] et [46], il est prouvé que Tp est stable par
équivalences lipschitziennes, que Pp est stable par équivalences grossièrement lipschitzi-
ennes et que A∞ = N∞ est stable par équivalences grossièrement lipschitziennes. Dans
[64], N. Kalton a prouvé que pour 1 < p < ∞, la classe Tp n'est pas stable par équiva-
lences grossièrement lipschitziennes. Grâce à nos théorèmes de renormage du chapitre 1,
on peut presque clôturer cet ensemble de résultats.

Théorème. Soit p ∈ (1,∞). Les classes Ap et Np sont stables par équivalences grossière-
ment lipschitziennes.

Indiquons que, pour Np, nous le déduisons de résultats déjà existants mais que cela
n'avait pas été remarqué tandis que, pour Ap, cela repose sur notre nouvelle caractérisation
de renormage.
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Nous concluons ce chapitre en citant quelques exemples connus d'espaces ayant T∞
ou A∞ et quelques questions.

Chapitre 4 : Quelques types asymptotiques.

Ce chapitre est basé sur un travail mené avec Florent Baudier.

Un des premiers résultats du programme de Ribe est la caractérisation purement
métrique de Bourgain-Milman-Wolfson [17] des espaces de Banach ayant un type linéaire
non trivial. Cette caractérisation de Bourgain-Milman-Wolfson repose sur une modi�ca-
tion de la notion (non-linéaire) de type d'En�o, que l'on appelle désormais type BMW.
Les types d'En�o et BMW sont intimement connectés à la géométrie de la suite des cubes
de Hamming {Hn}n∈N. Il est immédiat de véri�er qu'un espace métrique avec un type
d'En�o ou BMW non trivial ne contient pas de copie bi-lipschitzienne des cubes de Ham-
ming avec une distorsion bornée uniforme (et on peut le faire de façon quantitative). Il
a été montré dans [17] que la réciproque est vraie pour le type BMW. La question de la
réciproque pour le type d'En�o reste un problème ouvert important. Puisque le cube de
Hamming n-dimensionnel Hn se plonge naturellement isométriquement dans `n1 , il s'ensuit
que tout espace de Banach qui contient uniformément (au sens linéaire) {`n1}n∈N contient
uniformément (au sens bi-lipschitzien) les cubes de Hamming. On sait grâce à un célèbre
résultat de Pisier [91] que les espaces de Banach contenant uniformément des copies des
`n1 sont exactement ceux qui ont un type linéaire trivial. Par conséquent, si un espace de
Banach ne contient pas de copie bi-lipschitzienne des cubes de Hamming avec une distor-
sion bornée uniforme, alors il doit avoir un type linéaire non trivial. Bourgain, Milman
et Wolfson ont montré qu'un espace de Banach dont le type linéaire vaut p ∈ (1, 2) a
nécessairement type BMW p− ε, pour tout ε ∈ (0, p− 1). La preuve de Pisier du résultat
analogue pour la notion de type d'En�o est basée sur une inégalité fondamentale, désor-
mais appelée inégalité de Pisier. Partant de cette discussion, on a équivalence entre les
assertions suivantes pour un espace de Banach X.

1. X a un type linéaire non trivial.

2. X ne contient pas uniformément les `n1 , n ∈ N.

3. X ne contient pas de copies bi-lipschitzienne des cubes de Hamming avec une dis-
torsion bornée uniforme.

4. X a un type BMW non trivial.

5. X a un type d'En�o non trivial.

Comme il a été mentionné plus haut, l'équivalence entre (3) et (4) est valable pour
n'importe quel espace métrique et est un analogue purement métrique de l'équivalence
entre (1) et (2), qui n'a de sens que pour les espaces de Banach. L'équivalence entre (1)
et (4) est un exemple de caractérisation métrique d'une propriété locale via des inégalités
de type Poincaré, tandis que l'équivalence entre (1) et (3) s'exprime grâce à l'exclusion
d'une suite de graphes �nis. C'est typique dans le programme de Ribe. La relation quan-
titative entre type linéaire et type d'En�o a été complètement élucidée par von Handel,
Ivanishvili, et Volberg [54]. Le problème d'En�o demandait si un espace de Banach avec
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type linéaire p devait avoir un type d'En�o égal à p (la réciproque étant clairement vraie).
La réponse à ce problème vieux d'alors 40 ans s'est révélée être positive dans [54], et
peut désormais être utilisée a�n de fournir une autre preuve à certaines des équivalences
ci-dessus.

La recherche de caractérisations métriques à des propriétés asymptotiques a débuté
avec [8]. Depuis la publication de [8], l'exploration d'une facette asymptotique du pro-
gramme de Ribe a mené à des résultats signi�catifs qui mettent en évidence le lien en-
tre propriétés asymptotiques des espaces de Banach et géométrie de suites de graphes
dénombrables in�nis. En particulier, des analogues asymptotiques de deux caractérisa-
tions métriques in�uentes de la super-ré�exivité ont été découverts dans [8] et [7]. Les
arbres à branchements dénombrables [8] et les diamants à branchements dénombrables
[7] jouent le rôle des arbres dyadiques dans [16] et des graphes diamants dyadiques dans
[59], respectivement. Il est intéressant de noter que le cadre asymptotique o�re une plus
grande variété de phénomènes géométriques potentiels, et que certaines caractérisations
métriques utiles de propriétés asymptotiques semblent ne pas avoir d'analogue dans le
programme de Ribe (voir [12], [11] pour un exemple marquant).

Formuler un analogue asymptotique du problème d'En�o, ou de la caractérisation
BMW, nous échappe encore et est un des problèmes fondamentaux du programme de
Ribe asymptotique. L'une des raisons étayant la di�culté de cette tâche est qu'il semble
ne pas y avoir de façon canonique de dé�nir ce qu'est le type linéaire asymptotique d'un
espace de Banach. Une approche en termes de structure asymptotique à la Maurey-
Milman-Tomczak-Jaergerman a été entreprise dans [29], où un analogue asymptotique de
l'équivalence linéaire entre (1) et (2) a été prouvé. Les graphes de Hamming, analogues
asymptotiques des cubes de Hamming, se sont déjà révélés être étroitement connectés
à la géométrie asymptotique des espaces de Banach, et leur géométrie imite en un sens
celle de leurs analogues �nis. Cependant, la géométrie des graphes de Hamming est
plus naturellement liée à la notion de modèles asymptotiques qu'à celle de structure
asymptotique, comme expliqué dans [11].

Formuler un analogue asymptotique cohérent et pertinent au problème d'En�o passe
par une meilleure appréhension des notions de �type linéaire asymptotique�. Nous voulons
pointer du doigt le fait que la classe des espaces de Banach super-ré�exifs peut être car-
actérisée géométriquement en termes de renormages uniformément lisses et/ou convexes
tandis que l'analogue asymptotique de ces renormages mène à des classes d'espaces de
Banach distinctes qui admettent des caractérisations métriques di�érentes. Avoir un type
linéaire non trivial possède de nombreuses caractérisations équivalentes, par exemple en
termes de B-convexité, d'infratype ou de type stable. Par conséquent, il se pourrait que
les analogues asymptotiques de ces notions mènent à di�érentes classes de Banach dans
le monde asymptotique, ce qui multiplie alors les candidats pour une éventuellement for-
mulation du problème d'En�o asymptotique.

Dans ce chapitre, nous conduisons une étude systématique de ces notions depuis une
perspective asymptotique. Nous proposons des analogues asymptotiques naturels aux
notions de B-convexité, d'infratype et de type stable, et nous montrons que les caractéri-
sations équivalentes en termes de type non trivial dans le cadre local restent vraies dans le
cadre asymptotique. Une fois les notions asymptotiques correctement dé�nies, certaines
preuves de la théorie locale pourront être transférées dans le cadre asymptotique de façon
parfois immédiate mais certains arguments locaux reposant sur la sous-multiplicativité de



Résumé de la thèse 9

constantes associées aux types nécessiteront des modi�cations non triviales.

Annexe A : Distance entre c0 and certains C(K).

Dans [21], Cambern prouve que la distance de Banach-Masur entre c, l'espace des
suites convergentes, et c0 vaut 3. Plus de quarante ans plus tard, Candido et Galego ont
étendu ce résultat en montrant que d(c0, C([0, ωn])) = 2n + 1 pour tout 1 ≤ n < ω (voir
[22]), à l'aide d'arguments venant majoritairement de la théorie de la mesure. Le but de
cette annexe est de donner une nouvelle preuve plus courte de l'inégalité d(c0, C([0, ωn])) ≥
2n+ 1 grâce à des arguments issus de la géométrie asymptotique des espaces de Banach.

Annexe B : Quelques indices non-linéaires.

Dans [10], Baudier, Lancien, Motakis et Schlumprecht ont exhibé une famille d'espaces
C , indexée par ω1 et dont aucun de ses membres n'est Lipschitz universel, qu'ils appellent
la famille des espaces métriques lisses de Schreier à valeurs rationnelles, qui contient assez
d'informations sur la structure de c0 pour qu'un espace métrique soit Lipschitz universel
pour la classe de tous les espaces métriques séparables s'il l'est pour C (on rappelle que,
d'après le théorème d'Aharoni [1], c0 est Lipschitz universel pour tous les espaces métriques
séparables). Pour ce faire, ils ont généralisé l'indice ordinal de Bourgain �mesurant� le
degré de présence d'une suite basique donnée dans un espace de Banach, en utilisant des
vignes à la places des arbres.
Après quelques rappels, nous montrerons avec des arguments similaires que des familles
semblables peuvent témoigner de la présence lipschitzienne de `p, 1 ≤ p < ∞. Nous
pourrons en déduire qu'un espace de Banach contenant une copie bi-lipschitzienne de
tout espace ré�exif asymptotiquement `1 contient une copie lipschitzienne de `1. Une
fois ce résultat prouvé, nous verrons qu'il peut être fait de même pour les plongements
grossièrement lipschitziens et qu'un espace de Banach contient une copie grossièrement
lipschitzienne de c0 s'il contient une copie grossièrement lipschitzienne de tout espace
ré�exif et asymptotiquement c0. Pour �nir, nous prouverons les équivalences suivantes.

Proposition. Soient X un espace de Banach et 1 ≤ p < ∞. Les assertions suivantes
sont équivalentes :

(i) ILip`p
(X) > ω;

(ii) IcL`p (X) > ω;

(iii) `p est �niment représentable dans X.

De même, ILipc0
(X) > ω si et seulement si IcLc0 (X) > ω si et seulement si c0 est �niment

représentable dans X.

où ILip`p (X) (respectivement IcL`p (X)) est l'indice ordinal permettant de mesurer le degré
de présence lipschitzienne (respectivement grossièrement lipschitzienne) de `p dans X.
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2. Summary of the thesis

A coarse Lipschitz embedding from a metric space M into a metric space N is a map
which is bi-Lipschitz for large enough distances (see precise de�nitions in Chapter 1). In
the seminal paper [95], M. Ribe proved that if a Banach space X coarse Lipschitz embeds
into a Banach space Y , then X is �nitely crudely representable into Y , which means
that all �nite-dimensional subspaces of X are linearly isomorphic, with a uniform distor-
tion, to subspaces of Y . In other words, the local properties of Banach spaces, that are
isomorphic properties of their �nite dimensional subspaces (such as type, cotype, super-
re�exivity,. . . ) are preserved under coarse Lipschitz embeddings. This initiated what is
now called the Ribe program, which aims at �nding purely metric characterizations of
local properties of Banach spaces. We refer to [81] and [5] for a discussion of the origins
and motivations of this program, and for a presentation of the most striking results in
this direction. In the last twenty years, the asymptotic structure of Banach spaces, which,
very vaguely speaking, deals with its of their �nite-codimensional subspaces or with the
properties of weakly null sequences and trees, also proved to be central in the non-linear
geometry of Banach spaces. We refer the reader to the seminal works of N. Kalton ([65]
and [63] for instance) and to the survey [47] and references therein. However, despite
the accumulation of quite a few important stability results, there is no general analogue
of Ribe's rigidity theorem in the setting of the asymptotic geometry of Banach spaces.
Every new result requires an ad hoc argument.
Each linear and non-linear part of this work will deal with two di�erent kinds of questions.
The �rst linear part will consist in a sharp study of four asymptotic smoothness proper-
ties denoted Tp,Ap,Np, and Pp, with an emphasis on renorming characterizations and the
three-space problem. Those renorming characterizations and the Gorelik principle will
drive us towards non-linear results by allowing us to exhibit two new properties that are
stable under coarse Lipschitz equivalences. Our second non-linear theme will be the study
of some concentration properties for Lipschitz maps de�ned on a family of graphs that
can prevent the coarse Lipschitz embedding of a Banach space into another. Finally, the
second linear part will consist in giving an asymptotic analogue of a famous local result
by Pisier involving several notions of types and B-convexity.

Let us now describe the structure of this thesis.

Chapter 1: Non-linear maps and asymptotic properties of Banach
spaces.

First, let us mention that the second section of this chapter is based on a joint work
with R. Causey and G. Lancien (see [30]).

In this �rst chapter, we de�ne the non-linear maps that play a role in this thesis and,
after some reminders on the Szlenk index, we describe in details four di�erent properties
dealing with the asymptotic uniform smoothness of Banach spaces, that we shall denote
Tp,Ap,Np, and Pp. First, we start by giving their de�nitions in terms of two-players games
on a Banach space X.

Then, we give the main characterizations of these properties, which involve, upper `p
estimates for weakly null trees, the existence of quantitatively good equivalent asymptot-
ically uniformly smooth norms and, dualy, the behaviour of the Szlenk index.
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We assume, for this introduction, that what we mean by weakly null trees is under-
standable. We can now state our main new result from Chapter 1. It describes various
characterizations of our property Ap. The renorming characterization is completely new
and will be crucial for our non-linear stability results.

Theorem A (with R. Causey and G. Lancien). Fix 1 < p <∞ and let q be conjugate to
p. Let X be a Banach space. The following are equivalent

(i) X ∈ Ap.

(ii) There exists a constant c > 0 such that for any weak neighborhood base D at 0 in
X, any n ∈ N, and any weakly null tree (xt)t∈D6n in the unit ball of X, there exists
t ∈ Dn such that

∀a = (ai)
n
i=1 ∈ `np ,

∥∥∥ n∑
i=1

aixt|i

∥∥∥ ≤ c‖a‖p.

(iii) There exists a constant M ≥ 1 and a constant C > 0, such that for any τ ∈ (0, 1]
there exists a norm | | on X satisfying M−1‖x‖X ≤ |x| ≤ M‖x‖X for all x ∈ X
and

∀σ ≥ τ, ρ| |(σ) ≤ Cσp.

(iv) X has q-summable Szlenk index.

Let us recall that a property (P ) of Banach spaces is separably determined if a Banach
space X has (P ) if and only if all its separable subspaces have (P ). We �nish this chapter
by providing a short and uni�ed proof of the fact that the four properties introduced here
are separably determined.

Chapter 2: Hamming graphs and concentration properties in non-
quasi-re�exive Banach spaces.

In 2008, in order to show that Lp(0, 1) is not uniformly homeomorphic to `p ⊕ `2 for
p ∈ (1,∞) \ {2}, Kalton and Randrianarivony [67] introduced a new technique based on
a certain class of graphs and asymptotic smoothness ideas. To be more speci�c, they
introduced a concentration property for Lipschitz maps de�ned on Hamming graphs into
a re�exive asymptotically uniformly smooth (AUS) Banach space X, that prevents coarse
Lipschitz embeddings of certain other spaces into X. Their result was used by Kalton
himself to deduce some information about the spreading models of a space that coarse
Lipschitz embeds into a re�exive AUS space (see [65]), and was later extended to the
quasi-re�exive setting by Lancien and Raja [74], who introduced a weaker concentration
property. Soon after, Causey [28] proved that quasi-re�exive spaces admitting so-called
upper `p tree estimates also have this same weaker concentration property (more precisely,
quasi re�exive spaces belonging to the class Np introduced in Chapter 1).

The purpose of this chapter is to start a general study of these concentration properties,
together with new ones. In particular, we will address the question of their stability under
sums of Banach spaces. This will allow us to get non-quasi-re�exive examples.
Our main result will be the following.
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Theorem B. Let p ∈ (1,∞), λ > 0, (Xn)n∈N a sequence of Banach spaces with property
λ-HICp,d.
Let E be a re�exive Banach space with a normalized 1-unconditional p-convex basis (en)n∈N
with convexity constant 1.
Then X =

(∑
n∈NXn

)
E
has property (λ+ 2 + ε)-HICp,d for every ε > 0.

Property λ-HICp,d is a re�nement of the property λ-HICp �rst considered by Lancien
and Raja: a space X has property λ-HICp if for any Lipschitz function f : ([N]k, dH)→ X,
there exist n,m in interlacing position such that ‖f(n)− f(m)‖ ≤ λk1/pLip(f).

As a consequence, we get that an `q-sum of a quasi-re�exive Banach space satisfying
upper `p tree estimates, 1 < q, p <∞, cannot equi-Lipschitz contain the Hamming graphs.
This is a generalization of the result mentioned above by Causey (see [28]), who proved
it for quasi-re�exive Banach spaces satisfying upper `p tree estimates. This is the �rst
result of this type for non-quasi-re�exive Banach spaces.

In order to show this result, we introduce the notions and the terminology we will use
later in the �rst section while Section 2 is dedicated to the proof itself.

Recently, Baudier, Lancien, Motakis and Schlumprecht [11] proved that any quasi-
re�exive asymptotic-c0 Banach space (see Section 3 for the de�nition of asymptotic-c0)
has property HIC∞. Even though we don't know if a Banach space with this property is
quasi-re�exive, we prove in the last section of this chapter that property HIC∞ implies
asymptotic-c0. In particular, the space T ∗(T ∗), where T ∗ is the original Banach space
constructed by Tsirelson in [98], cannot have this concentration property.
We also give an example in the non-quasi-re�exive setting of a separable dual asymptotic-
c0 space that does not Lipschitz contain `1 nor c0 and without any of the concentration
properties introduced in this chapter. This example is based on a generalization of the
construction of Lindenstrauss spaces, that is due to Schlumprecht.

Chapter 3: Three-space properties and non-linear stabilities.

This chapter is in two parts and is based on a joint work with Ryan Causey and Gilles
Lancien [30]. The �rst one is devoted to the study of the three-space problem for Tp,Ap,Np
and Pp, introduced in the �rst chapter. The second one is dedicated to non-linear stability
results.

Let us recall that a property (P ) of Banach spaces is a Three-Space Property (3SP in
short) if it passes to quotients and subspaces and a Banach space X has (P ) whenever it
admits a subspace Y such that Y and X/Y have (P ). The properties Tp,Ap,Np and Pp
pass quite simply to subspaces, quotients or isomorphs and it was proved in [29] that Pp
is a 3SP. First, we take the opportunity of this chapter to provide a more direct argument
for this. Then, with a single example, we show

Theorem C. Let p ∈ (1,∞). Then Tp,Ap, and Np are not three-space properties.

Finally, and this is the main result about three-space properties, we show

Theorem D. Asymptotic uniform �attenability (property T∞) and summable Szlenk in-
dex (property A∞) are three-space properties.
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A net in a metric space (M,d) is a subsetM of M such that there exist 0 < a < b so
that for every z 6= z′ inM, d(z, z′) ≥ a and for every x in M , d(x,M) < b. Let us use,
for the simplicity of this introduction, that two in�nite dimensional Banach spaces X and
Y are coarse Lipschitz equivalent if and only if there exist two nets in X and Y that are
Lipschitz equivalent. The precise de�nition of a coarse Lipschitz equivalence is given in
Chapter 1 and can be roughly described as a Lipschitz equivalence at large distances. In
[45] and [46], it is proved that Tp is stable under Lipschitz equivalences, Pp is stable under
coarse Lipschitz equivalences and A∞ = N∞ is stable under coarse Lipschitz equivalences.
In [64], N. Kalton proved that for 1 < p < ∞, the class Tp is not stable under coarse
Lipschitz equivalences. Thanks to our renorming theorems from Chapter 1, we can almost
complete this set of results.

Theorem E. Let p ∈ (1,∞). Then, the class Ap and the class Np are stable under coarse
Lipschitz equivalences.

Let us point that for Np, this is deduced from already existing results, but was unno-
ticed, while for Ap it relies on our new renorming characterization.

We conclude this chapter by gathering a few known examples of T∞ or A∞ spaces and
related questions.

Chapter 4: Some asymptotic types.

This chapter is based on a joint work with Florent Baudier.

One of the earliest results in the Ribe program is the Bourgain-Milman-Wolfson purely
metric characterization of Banach spaces with non-trivial linear type. The Bourgain-
Milman-Wolfson [17] characterization is based on a modi�cation of the (non-linear) notion
of En�o type, which has come to be referred to as BMW type. En�o and BMW types
are intimately connected to the geometry of the sequence of Hamming cubes {Hn}n∈N.
It is immediate to verify that any metric space with non-trivial En�o or BMW type does
not contain bi-Lipschitz copies of the Hamming cubes with uniformly bounded distortion
(and this can be made quantitative). It was shown in [17] that the converse holds for
BMW type. Whether the converse holds for En�o type is an important open problem.
Since the n-dimensional Hamming cube Hn naturally isometrically embeds into `n1 , it
follows that every Banach space that contains {`n1}n∈N uniformly (in the linear sense) will
contain the Hamming cubes uniformly (in the bi-Lipschitz sense). It is a famous theorem
of Pisier [91] that Banach spaces containing uniformly isomorphic copies of the `n1 's are
exactly the Banach spaces with trivial linear type. Therefore, if a Banach space does
not contain bi-Lipschitz copies of the Hamming cubes with uniformly bounded distortion,
then it must have non-trivial linear type. Bourgain, Milman, and Wolfson showed that if
a Banach space has linear type p ∈ (1, 2) then necessarily it has BMW type p− ε, for all
ε ∈ (0, p− 1). Pisier's proof of the analogous result for the notion of En�o type is based
on a fundamental inequality, nowadays called Pisier's inequality. Based on the discussion
above, we have that for any Banach space X, the following assertions are equivalent.

1. X has non-trivial linear type.

2. X does not contain `n1 's uniformly.
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3. X does not contain bi-Lipschitz copies of the Hamming cubes with uniformly bounded
distortion.

4. X has non-trivial BMW type.

5. X has non-trivial En�o type.

As mentioned above, the equivalence between (3) and (4) holds for arbitrary metric spaces
and is a purely metric analogue of the equivalence between (1) and (2), which only makes
sense for Banach spaces. The equivalence between (1) and (4), for instance, is an example
of a metric characterization of a local property in terms of Poincaré-type inequalities, while
the equivalence between (1) and (3) is expressed in terms of preclusion of a sequence of
�nite graphs. These are typical in the Ribe progam. The quantitative relationship between
linear type and En�o type has been completely elucidated by von Handel, Ivanishvili, and
Volberg [54]. En�o's Problem asked whether a Banach space with linear type p must have
En�o type p (that the converse holds is straightfoward). This 40-year old open problem
at the time was solved positively in [54], and can now be used to provide alternate proofs
of some of the equivalences above.

The study of metric characterizations of asymptotic properties was initiated in [8].
Since the appearance of [8], the investigation of the asymptotic facet of the Ribe program
has led to signi�cant results emphasizing the link between asymptotic properties of Ba-
nach spaces and the geometry of sequences of countably in�nite graphs. In particular,
asymptotic analogues of two in�uential metric characterizations of super-re�exivity were
discovered in [8] and [7]. The countably branching trees [8] and the countably branching
diamonds [7] play the role of the binary trees in [16], and the binary diamond graphs in
[59], respectively. It is worth pointing out that the asymptotic setting o�ers a �ner grain
regarding the variety of the potential geometric phenomena that can occur, and there
are useful metric characterizations of asymptotic properties which do not seem to have
analogues in the local Ribe progam (see [12], [11] for a striking example).

Formulating an asymptotic analogue of En�o's Problem, or of the BMW characteri-
zation, has remained elusive and is one of the fundamental problems in the asymptotic
facet of the Ribe program. One of the reasons underpining the di�culty of this task,
stands from the fact that there does not seem to be a canonical way to de�ne what is the
asymptotic linear type of a Banach space. One approach in terms of Maurey-Milman-
Tomczak-Jaergerman asymptotic structure was undertaken in [29] where an asymptotic
analogue of the linear equivalence of (1) and (2) was proved. The Hamming graphs,
which are countably in�nite graphs de�ned in a similar way as the Hamming cubes, have
already shown to be tightly connected to the asymptotic geometry of Banach spaces, and
their geometry mimics to some extent the geometry of their �nite counterparts. However,
the geometry of the Hamming graphs is most naturally connected with the notion of
asymptotic models rather than to the notion of asymptotic structure as explained in [11].

In order to formulate a viable and useful asymptotic analogue of En�o's Problem, one
�rst needs to further our understanding of potential notions of �asymptotic linear type�.
We want to point out that the class of super-re�exive Banach spaces can be geometrically
characterized in terms of equivalent uniformly smooth and/or convex renormings, but the
asymptotic analogues of these renormings lead to distinct classes of Banach spaces which
admit distinct metric characterizations. Having non-trivial linear type has numerous
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equivalent characterizations, e.g. in terms of B-convexity, infratype, or stable type. Thus,
it could be that considering asymptotic analogues of these notions leads to distinct classes
in the asymptotic world, thereby multiplying the candidates for potential formulations of
an asymptotic En�o's Problem.

In this chapter, we conduct a rather systematic study of these notions from the asymp-
totic perspective. We propose natural asymptotic analogues of B-convexity, infratype,
and stable type, and show that all the equivalent characterizations of non-trivial type in
terms of the local notions remain equivalent characterizations for their asymptotic coun-
terparts. Some of the local proofs can be transferred somewhat straighforwardly to the
asymptotic setting once the asymptotic notions have been adequately de�ned. However,
some of the local arguments relying on the submultiplicativity of various type constants
need non-trivial modi�cations.

Appendix A: Distance between c0 and some C(K).

In [21], Cambern proves that the value of the Banach-Mazur distance between c,
the space of convergent sequences, and c0 is 3. More than forty years later, Candido and
Galego extended this result by showing that d(c0, C([0, ωn])) = 2n+1 for every 1 ≤ n < ω
(see [22]), with arguments mainly coming from measure theory. The purpose of this
appendix is to give a new and shorter proof of the inequality d(c0, C([0, ωn])) ≥ 2n + 1
with arguments coming from asymptotic geometry of Banach spaces.

Appendix B: Some non-linear indices.

In [10], Baudier, Lancien, Motakis and Schlumprecht exhibited an uncountable col-
lection C , which they refer to as the collection of rational-valued smooth Schreier metric
spaces, that captures enough structure of c0 so that a metric space is Lipschitz universal
for the class of all separable metric spaces if it is universal for C (we recall that, by
Aharoni's theorem [1], c0 is Lipschitz universal for all separable metric spaces). In order
to do that, they generalized Bourgain's ordinal index �measuring� how present is a given
basic sequence in a Banach space, by using vines instead of trees.
After some reminders, we will show with similar arguments that alike families can capture
the Lipschitz presence of `p, 1 ≤ p <∞. This will allow us to deduce that a Banach space
containing a bi-Lipschitz copy of every re�exive asymptotic-`1 space contains a Lipschitz
copy of `1. Once this result is proved, we will see that the same can be done with coarse-
Lipschitz embeddings and that a Banach space contains a coarse-Lipschitz copy of c0 if
it contains a coarse-Lipschitz copy of every re�exive asymptotic-c0 space. Finally, we will
prove the following equivalences.

Proposition. Let X be a Banach space, 1 ≤ p <∞. The following are equivalent:

(i) ILip`p
(X) > ω;

(ii) IcL`p (X) > ω;

(iii) `p is �nitely representable in X.

Similarly, ILipc0
(X) > ω if and only if IcLc0 (X) > ω if and only if c0 is �nitely representable

in X.

where ILip`p (X) (respectively IcL`p (X)) is the ordinal index measuring the Lipschitz pres-
ence (respectively coarse Lipschitz presence) of `p in X.
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3. Notation

All Banach spaces are over the �eld K, which is either R or C. We denote the closed unit
ball of a Banach space X by BX , and its unit sphere by SX . Given a Banach space X with
norm ‖·‖X , we simply write ‖·‖ as long as it is clear from the context on which space it is
de�ned. By subspace, we shall always mean closed subspace. Unless otherwise speci�ed,
all spaces are assumed to be in�nite-dimensional. Throughout, we let Ban denote the class
of all Banach spaces over K. We let Sep denote the class of separable members of Ban.
We recall that a Banach space is said to be quasi-re�exive if the image of its canonical
embedding into its bidual is of �nite codimension in its bidual.
We say that a basic sequence (ei)i∈N of a Banach space E is c-unconditional, for some
c ≥ 1, if, for any (ai)i∈N, (bi)i∈N ∈ c00 (the vector space of all real sequences with �nite
support), we have : ∥∥∥ ∞∑

i=1

aiei

∥∥∥ ≤ c
∥∥∥ ∞∑
i=1

biei

∥∥∥
whenever |ai| ≤ |bi| for every i ∈ N.
Let (Xn)n∈N be a sequence of Banach spaces. Let E = (en)n∈N be a 1-unconditional basic
sequence in a Banach space E with norm ‖ · ‖E. We de�ne the sum

(∑
n∈NXn

)
E to be

the space of sequences (xn)n∈N, where xn ∈ Xn for all n ∈ N, such that
∑

n∈N ‖xn‖Xnen
converges in E, and we set

‖(xn)n∈N‖ =
∥∥∥∑
n∈N

‖xn‖Xnen

∥∥∥
E
<∞.

One can check that
(∑

n∈NXn

)
E , endowed with the norm ‖ · ‖ de�ned above, is a Banach

space. We can, in a similar way, de�ne �nite sums
(∑n

j=1Xj

)
E
for all n ∈ N, and, in case

n = 2, we will write X1

⊕
E
X2. If it is implicit what is the basis E of the Banach space

E that we are working with, we write
(∑

n∈NXn

)
E
or X1

⊕
E

X2. Also, if the Xn's are all

the same, say Xn = X, for all n ∈ N, we write E(X).
Let us �nish this section with the following de�nition.

Let p ∈ (1,∞) and E be a Banach space with a 1-unconditional basis (en)n∈N. We say
that the basis (en)n∈N is p-convex with convexity constant C if :

∥∥∥∑
j∈N

(|x1
j |p + · · ·+ |xkj |p)

1
p ej

∥∥∥p ≤ Cp

k∑
n=1

‖xn‖p

for all x1 =
∞∑
j=1

x1
jej, · · · , xk =

∞∑
j=1

xkj ej ∈ E (cf De�nition 1.d.3 of [76]).



Chapter 1

Non-linear maps and asymptotic

properties of Banach spaces

The goal of this chapter is to introduce the notions we will need in this thesis. In par-
ticular, we describe in details four asymptotic smoothness properties of Banach spaces,
denoted Tp,Ap,Np, and Pp. We complete their description by proving the missing renorm-
ing characterization for Ap.

Let us brie�y describe the organization of this chapter. In a �rst short section, we
will de�ne the categories of non-linear maps considered later, starting with metric equiv-
alences and �nishing with metric embeddings.

In a second section, based on a joint work with R. Causey and G. Lancien (see [30]),
we start by recalling the de�nition and some basic facts about the Szlenk index. Next, we
de�ne the four asymptotic properties at stake Tp,Ap,Np, and Pp, �rst in terms of certain
games and then in terms of weakly null trees. Then, we give a complete description
of these classes, insisting on the renorming characterizations. For the property Ap, this
result is new and will be used in Chapter 3 to prove the stability of this class under coarse-
Lipschitz equivalences. We �nish this chapter with a proof of the separable determination
of all these properties.

1.1 Non-linear maps

1.1.1 Metric equivalences

De�nition 1.1.1. Let (M,d) and (N, δ) be two metric spaces. A map f : M → N is a
Lipschitz equivalence (or Lipschitz isomorphism) fromM to N if f is a Lipschitz bijection
from M to N with Lipschitz inverse. If there exists a Lipschitz equivalence from M to N ,
we say that M and N are Lipschitz equivalent (or Lipschitz isomorphic) and we denote
M

L∼ N .

De�nition 1.1.2. Let (M,d) and (N, δ) be two unbounded metric spaces and f : M → N
be a map. We say that f is coarse Lipschitz if there exist A,B ∈ [0,∞) such that

∀x, y ∈M, δ(f(x), f(y)) ≤ Ad(x, y) +B.

17
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We say that f is a coarse Lipschitz equivalence from M to N , if it is coarse Lipschitz and
there exist a coarse Lipschitz map g : N →M and a constant C ≥ 0 such that

∀x ∈M d
(
(g ◦ f)(x), x

)
≤ C and ∀y ∈ N δ

(
(f ◦ g)(y), y

)
≤ C.

If there exists a coarse Lipschitz equivalence from M to N , we say that M and N are
coarse Lipschitz equivalent and denote M CL∼ N .

This notion of coarse Lipschitz equivalent metric spaces is the same as the notion of
quasi-isometric metric spaces introduced by Gromov in [48] (see also the book [42] by E.
Ghys and P. de la Harpe or the book [85] by P. W. Nowak and G. Yu).

We now turn to the notion of net in a metric space.

De�nition 1.1.3. Let 0 < a ≤ b. An (a, b)-net in the metric space (M,d) is a subsetM
of M such that for every z 6= z′ inM, d(z, z′) ≥ a and for every x in M , d(x,M) < b.
Then a subsetM of M is a net in M if it is an (a, b)-net for some 0 < a ≤ b.

Let us now give two technical equivalent formulations of the notion of coarse Lipschitz
equivalence between Banach spaces. We refer to [32] or [47] for details.

Proposition 1.1.4. Let X and Y be two Banach spaces and let f : X → Y be a map.
The following assertions are equivalent.

(i) The map f is a coarse Lipschitz equivalence.

(ii) There exist A0 > 0 and K ≥ 1 such that for all A ≥ A0 and all maximal A-separated
subsetM of X, N = f(M) is a net in Y and

∀x, x′ ∈M 1

K
‖x− x′‖ ≤ ‖f(x)− f(x′)‖ ≤ K‖x− x′‖.

(iii) There exist two continuous coarse Lipschitz maps ϕ : X → Y and ψ : Y → X and
a constant C ≥ 0 such that ‖ϕ(x)− f(x)‖ ≤ C for all x in X and

∀x ∈ X ‖(ψ ◦ ϕ)(x)− x‖ ≤ C and ∀y ∈ Y ‖(ϕ ◦ ψ)(y)− y‖ ≤ C.

1.1.2 Metric embeddings

Let us give some de�nitions on metric embeddings.
Let (X, dX) and (Y, dY ) be two metric spaces, let f be a map from X to Y .
We de�ne the compression modulus of f by

∀t ≥ 0, ρf (t) = inf{dY (f(x), f(y)); dX(x, y) ≥ t};

and the expansion modulus of f by

∀t ≥ 0, ωf (t) = sup{dY (f(x), f(y)); dX(x, y) ≤ t}.

We adopt the convention inf(∅) = +∞. Note that, for every x, y ∈ X, we have

ρf (dX(x, y)) ≤ dY (f(x), f(y)) ≤ ωf (dX(x, y)).
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We say that f is a bi-Lipschitz embedding if there exist A,B in (0,∞) such that ρf (t) ≥ At
and ωf (t) ≤ Bt for all t ≥ 0. If there exists such an embedding f , we denote (X, dX) ↪→

L

(Y, dY ).
If the metric spaces are unbounded, the map f is said to be a coarse embedding if
limt→∞ ρf (t) =∞ and ωf (t) <∞ for all t > 0. It is worth mentioning that if the metric
spaces are unbounded and X is metrically convex (i.e for all x, y ∈ X, for every λ ∈ (0, 1),
there exists zλ ∈ X such that dX(x, zλ) = λdX(x, y) and dX(y, zλ) = (1 − λ)dX(x, y)),
having ωf (t) < ∞ for all t > 0 implies the existence of two constants A,B > 0 so that
ωf (t) ≤ At+B for every t > 0.
If one is given a family of metric spaces (Xi)i∈I , one says that (Xi)i∈I equi-Lipschitz
embeds into Y , denoted by Xi ↪→

eL
Y , if there exist A,B in (0,∞) and, for all i ∈ I,

maps fi : Xi → Y such that ρfi(t) ≥ At and ωfi(t) ≤ Bt for all t ≥ 0. One also says
that the family (Xi)i∈I equi-coarsely embeds into Y if there exist non-decreasing functions
ρ, ω : [0,∞) → [0,∞) and for all i ∈ I, maps fi : Xi → Y such that ρ ≤ ρfi , ωfi ≤ ω,
limt→∞ ρ(t) =∞ and ω(t) <∞ for all t > 0.
Besides, we say that f is a coarse Lipschitz embedding if there exist A,B,C,D in (0,∞)
such that ρf (t) ≥ At − C and ωf (t) ≤ Bt + D for all t ≥ 0. If X and Y are Banach
spaces, this is equivalent to the existence of numbers θ ≥ 0 and 0 < c1 < c2 so that :

c1‖x− y‖X ≤ ‖f(x)− f(y)‖Y ≤ c2‖x− y‖X

for all x, y ∈ X satisfying ‖x− y‖X ≥ θ.
If one is given a family of metric spaces (Xi)i∈I , one says that (Xi)i∈I equi-coarse-Lipschitz
embeds into Y if there exist A,B,C,D in (0,∞) and, for all i ∈ I, maps fi : Xi → Y such
that ρfi(t) ≥ At− C and ωfi(t) ≤ Bt+D for all t ≥ 0.
Finally, a way to re�ne the scale of coarse embeddings is to talk about compression
exponents, introduced by Guentner and Kaminker in [49]. Let X and Y to Banach
spaces. The compression exponent of X in Y , denoted by αY (X), is the supremum of all
α ∈ [0, 1) for which there exist a coarse embedding f : X → Y and A,C in (0,∞) so that
ρf (t) ≥ Atα − C for all t > 0.

Let us now introduce the notions related to asymptotic smoothness we will study in
this thesis.

1.2 Szlenk index and asymptotic properties

This section is part of a joint work with Ryan Causey and Gilles Lancien (see [30]).

1.2.1 De�nitions and �rst properties

Let us �rst recall the de�nition of the Szlenk derivation. For a Banach space X, K ⊂ X∗

weak∗-compact, and ε > 0, we let sε(K) denote the set of x∗ ∈ K such that for each
weak∗-neighborhood V of x∗, diam(V ∩ K) ≥ ε. For 1 6 q < ∞, we say X has q-
summable Szlenk index provided that there exists a constant c > 0 such that for any
n ∈ N and any ε1, . . . , εn > 0 such that sε1 . . . sεn(BX∗) 6= ∅ (we write sε1 . . . sεn(BX∗)
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instead of sε1(. . . (sεn(BX∗))) for convenience),
∑n

i=1 ε
q
i 6 cq. In the q = 1 case, we refer

to this as summable Szlenk index rather than 1-summable Szlenk index.
We now recall the de�nition of the Szlenk index, based on the Szlenk derivation. For a

Banach space X, K ⊂ X∗ weak∗-compact, and ε > 0, we de�ne the trans�nite derivations

s0
ε(K) = K,

sξ+1
ε (K) = sε(s

ξ
ε(K)),

and if ξ is a limit ordinal,
sξε(K) =

⋂
ζ<ξ

sζε(K).

For convenience, we let s0(K) = K. If there exists an ordinal ξ such that sξε(K) = ∅, we
let Sz(K, ε) denote the minimum such ordinal, and otherwise we write Sz(K, ε) = ∞.
We let Sz(K) = supε>0 Sz(K, ε), where Sz(K) =∞ if Sz(K, ε) =∞ for some ε > 0. We
let Sz(X, ε) = Sz(BX∗ , ε) and Sz(X) = Sz(BX∗).

We de�ne similarly the convex Szlenk index of X, denoted Cz(X) and introduced in
[46], from the following somewhat slower derivation: if K ⊂ X∗ is weak∗-compact and
ε > 0, then cε(K) is the weak∗-closed convex hull of sε(K).

In Chapters 1 and 3, we will exclusively be concerned with Banach spaces X such
that Sz(X) 6 ω, where ω is the �rst in�nite ordinal. Since Sz(X) = 1 if and only if X
has �nite dimension, and otherwise Sz(X) > ω, we will actually only be concerned with
the case Sz(X) = ω. By compactness, Sz(X) 6 ω if and only if Sz(X, ε) is a natural
number for each ε > 0. We note that Sz(X) < ∞ if and only if X is Asplund. One
characterization of Asplund spaces is that every separable subspace has a separable dual.

We recall that for any Banach space X and 0 < ε, δ < 1,

Sz(X, εδ) 6 max{Sz(X, ε)Sz(X, δ);Sz(X, δ)Sz(X, ε)}.

From this it follows that if Sz(X, ε) is a natural number for each ε > 0, the Szlenk power
type

p(X) := lim
ε→0+

logSz(X, ε)

| log(ε)|
is �nite. It also holds that for any ordinal ξ, any ε > 0, and any natural number n, if
Sz(X, ε) > ξ, then Sz(X, ε

n
) > ξn. Indeed, this follows from realizing

BX∗ =
1

n
BX∗ + . . .+

1

n
BX∗

and noting that the ε
n
-derivations act on one summand at a time in the same way that

the ε-derivations act on BX∗ . Therefore the ε-Szlenk index grows subgeometrically but
superarithmetically. The superarithmetic growth implies that for any in�nite dimensional
Banach space, p(X) > 1.

Let us introduce the modulus of asymptotic uniform smoothness of X. If X is in�nite-
dimensional, for σ > 0, we de�ne

ρX(σ) = sup
y∈BX

inf
E∈cof(X)

sup
x∈BE

‖y + σx‖ − 1,
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where cof(X) denotes the set of �nite codimensional subspaces of X. For the sake of
completeness, we de�ne ρX(σ) = 0 for all σ > 0, when X is �nite-dimensional. We note
that

ρX(σ) = sup
y∈BX

sup{lim sup
λ
‖y + σxλ‖ − 1 : (xλ) ⊂ BX is a weakly null net}.

It follows easily from the triangle inequality that ρX is a convex function. Since ρX(0) = 0,
we deduce that σ 7→ ρX(σ)

σ
is non-decreasing on (0,∞). Therefore

inf
σ>0

ρX(σ)

σ
= lim

σ→0+

ρX(σ)

σ
.

We say X is asymptotically uniformly smooth (in short AUS ) if

inf
σ>0

ρX(σ)

σ
= 0.

We say X is asymptotically uniformly smoothable (AUS-able) if X admits an equivalent
AUS norm. For 1 < p < ∞, we say X is p-asymptotically uniformly smooth (in short
p-AUS ) if

sup
σ>0

ρX(σ)

σp
<∞.

We say X is p-asymptotically uniformly smoothable (p-AUS-able) if X admits an equiva-
lent p-AUS norm. We say X is asymptotically uniformly �at (AUF ) if there exists σ0 > 0
such that ρX(σ0) = 0. We say X is asymptotically uniformly �attenable if X admits an
equivalent AUF norm. Of course, p-AUS spaces and AUF spaces are AUS spaces.

We also de�ne the two following moduli. For ε > 0, we let

θ
∗
X(ε) = sup{δ ≥ 0, sε(BX∗) ⊂ (1− δ)BX∗}

and we de�ne the modulus of weak∗ asymptotic uniform convexity by

δ
∗
X(t) = inf

x∗∈SX∗
sup
E

inf
y∗∈SE

‖x∗ + ty∗‖ − 1

where E runs through the set of all weak∗-closed subspaces of X∗ of �nite codimension.
It is well known that the dual Young function of the modulus of asymptotic uniform

smoothness is equivalent to the so-called modulus of weak∗ asymptotic uniform convex-
ity δ

∗
X (see Proposition 2.1 and Corollary 2.3 in [34]), where two continuous increasing

functions f, g on [0, 1] satisfying f(0) = g(0) = 0 are said to be equivalent if one can
�nd C > 0 such that f(t) ≥ g(t/C) and g(t) ≥ f(t/C) for all t ∈ [0, 1]. Let us note the
following.

Proposition 1.2.1. The modulus δ
∗
X is equivalent to θ

∗
X .

Proof. First, let us remark that the inequality θ
∗
X(t) ≥ δ

∗
X(t/2) is clear. Let us prove that

θ
∗
X(t/2) ≤ δ

∗
X(t). Let 1 ≥ δ > δ

∗
X(t).

There exists z∗ ∈ SX∗ such that for every weak∗-closed subspace E of X∗ of �nite codi-
mension, we can �nd y∗ ∈ SE so that ‖z∗ + ty∗‖ ≤ 1 + δ. Then it is enough to note that
x∗ = 1

1+δ
z∗ ∈ BX∗ satis�es ‖x∗‖ > 1− δ and x∗ ∈ st/2(BX∗) since δ ≤ 1.
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It will be more convenient for us to work with θ
∗
X . We shall only need the following

version of Proposition 2.1 in [34].

Proposition 1.2.2. There exists a universal constant C ≥ 1 such that for any Banach
space X and any 0 < σ, τ < 1,

1. If ρX(σ) < στ , then θ
∗
X(Cτ) ≥ στ .

2. If θ
∗
X(τ) > στ , then ρX( σ

C
) ≤ στ .

For 1 6 q <∞, a Banach spaceX, and a sequence (xi)
∞
i=1 ⊂ X, we de�ne the (possibly

in�nite) quantity
‖(xi)∞i=1‖wq = sup{‖(x∗(xi))∞i=1‖`q : x∗ ∈ BX∗}.

We also de�ne this quantity for �nite sequences,

‖(xi)ni=1‖wq = sup{‖(x∗(xi))ni=1‖`nq : x∗ ∈ BX∗}.

Note that, if p ∈ (1,∞] is the conjugate exponent of q, we have that

‖(xi)∞i=1‖wq = inf
{
c ∈ (0,∞], ∀a = (ai)

∞
i=1 ∈ `p ‖

∞∑
i=1

aixi‖ ≤ c‖a‖p
}
.

A similar formula is valid for ‖(xi)ni=1‖wq .
We next de�ne four di�erent two-players games on a Banach space X. Fix 1 < p 6∞

and let 1/p + 1/q = 1. For c > 0 and n ∈ N, we de�ne the T (c, p) game on X, the
A(c, p, n) game, and the N(c, p, n) game. Let D be a weak neighborhood base at 0 in
X. In the T (c, p) game, Player I chooses a weak neighborhood U1 ∈ D, and Player II
chooses x1 ∈ U1 ∩ BX . Player I chooses U2 ∈ D, and Player II chooses x2 ∈ U2 ∩ BX .
Play continues in this way until (xi)

∞
i=1 has been chosen. Player I wins if ‖(xi)∞i=1‖wq 6 c,

and Player II wins otherwise.
The A(c, p, n) game is similar, except the game terminates after the nth turn. Player

I wins if ‖(xi)ni=1‖wq 6 c, and Player II wins otherwise.
In the N(c, p, n) game, as in the A(c, p, n) game, the game terminates after the nth

turn. Player I wins if
∥∥∥∑n

i=1 xi

∥∥∥ 6 cn1/p, and Player II wins otherwise.

Finally, in the Θ(c, n) game, Player I wins if
∥∥∥∑n

i=1 xi

∥∥∥ 6 c, and Player II wins
otherwise.

It is known (see [26], Section 3) that each of these games is determined. That is,
in each game, either Player I or Player II has a winning strategy. We let tp(X) denote
the in�mum of c > 0 such that Player I has a winning strategy in the T (c, p) game,
provided such a c exists, and we let tp(X) = ∞ otherwise. We let ap,n(X) denote the
in�mum of c > 0 such that Player I has a winning strategy in the A(c, p, n) game, and
we let ap(X) = supn ap,n(X). We note that ap(X) is the in�mum of c > 0 such that for
each n ∈ N, Player I has a winning strategy in the A(c, p, n) game if such a c exists,
and ap(X) = ∞ otherwise. We let θn(X) denote the in�mum of c > 0 such that Player
I has a winning strategy in the Θ(c, n) game, noting that θn(X) 6 n. Finally, we let
np,n(X) = θn(X)/n1/p and np(X) = supn np,n(X), noting that np(X) is the in�mum of
c > 0 such that for each n ∈ N, Player I has a winning strategy in the N(c, p, n) game,
provided such a c exists, and np(X) =∞ otherwise.
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Remark 1.2.3. The existence of winning strategies, and therefore the constants associated
with these games, do not depend upon the particular choice of the weak neighborhhod
baseD. Therefore in the case thatX has a separable dual, these constants are sequentially
determined. Let us indicate the argument.

Proof. If D1, D2 are two weak neighborhood bases at 0 in X, and Player I has a winning
strategy in any of the games above when Player I is required to choose from D1, then
this winning strategy can be used to construct a winning strategy choosing from D2 by
choosing at each stage of the game any member of D2 which is a subset of the member of
D1 indicated by the winning strategy. From this it follows that the values of the associated
constants also do not depend on D. In particular, in the case that X∗ is separable, we
can use a �xed countable, linearly ordered weak neighborhood base D.

Let D6n = ∪ni=1D
i. Let D<ω = ∪∞i=1D

i, and let Dω denote the set of all in�nite
sequences whose members lie in D. Let D6ω = D<ω ∪Dω. For s, t ∈ D<ω, we let s a t
denote the concatenation of s with t. We let |t| denote the length of t. For 0 6 i 6 |t|, we
let t|i denote the initial segment of t having length i, where t|0 = ∅ is the empty sequence.
If s ∈ {∅} ∪D<ω, we let s ≺ t denote the relation that s is a proper initial segment of t.

We say a function ϕ : D<ω → D<ω is a pruning provided that

(i) |ϕ(t)| = |t| for all t ∈ D6n,

(ii) if s ≺ t, then ϕ(s) ≺ ϕ(t),

(iii) if ϕ((U1, . . . , Uk)) = (V1, . . . , Vk), then Vk ⊂ Uk.

We de�ne prunings ϕ : D6n → D6n similarly.
Given D a weak neighborhood base of 0 in X and (xt)t∈D<ω ⊂ X, we say (xt)t∈D<ω is

(i) weakly null of type I provided that for each t = (U1, . . . , Uk), xt ∈ Uk,

(ii) weakly null of type II provided that for each t ∈ {∅} ∪D<ω,
(xta(U))U∈D is a weakly null net. Here D is directed by reverse inclusion.

The notions of weakly null of types I and II for collections indexed by D6n are de�ned
similarly. Note that a weakly null collection of type I is weakly null of type II. We now
link these notions with our various games.

Proposition 1.2.4. Let X be a Banach space, let p ∈ (1,∞], and c > 0. Then, Player
II has a winning strategy in the T (c, p) game on X if and only if there exists a collection
(xt)t∈D<ω ⊂ BX such that

(a) (xt)t∈D<ω is weakly null of type I, and

(b) for each τ ∈ Dω, ‖(xτ |i)∞i=1‖wq > c.

Proof. First, if such a collection exists, we can use it to de�ne a winning strategy for
Player II in the T (c, p) game. When Player I chooses U1 ∈ D, then Player II chooses
x(U1). Player I chooses U2 ∈ D, to which Player II's response is x(U1,U2). Play continues
in this way, and the result is (xτ |i)

∞
i=1 for some τ ∈ Dω, which satis�es ‖(xτ |i)∞i=1‖wq > c.

On the other hand, if Player II has a winning strategy in the T (c, p) game, we de�ne by
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induction on k the vector x(U1,...,Uk) to be Player II's response according to this winning
strategy following the choices U1, x(U1), U2, x(U1,U2), . . . , Uk in the T (c, p) game. It follows
from the rules of the game that (a) is satis�ed, and it follows from the fact that Player II
plays according to a winning strategy that (b) is satis�ed.

Analogous statements about (xt)t∈D6n ⊂ BX can be made for the A(c, p, n), N(c, p, n),
and Θ(c, n) games. We also have

Proposition 1.2.5. Let X be a Banach space, let p ∈ (1,∞], and c > 0. Then, Player
II has a winning strategy in the T (c, p) game if and only if there exists a collection
(xt)t∈D<ω ⊂ BX such that

(a) (xt)t∈D<ω is weakly null of type II, and

(b) for each τ ∈ Dω, ‖(xτ |i)∞i=1‖wq > c.

Proof. Since any collection which is weakly null of type I is also weakly null of type II,
by the previous proposition, it is su�cient to note that if (xt)t∈D<ω ⊂ BX is weakly null
of type II, then there exists a pruning ϕ : D<ω → D<ω such that (xϕ(t))t∈D<ω ⊂ BX is
weakly null of type I. Moreover, property (b) is retained by the collection (xϕ(t))t∈D<ω .

Again, analogous statements hold for collections indexed by D6n and the games
A(c, p, n), N(c, p, n), and Θ(c, n). Unless otherwise speci�ed, by a weakly null collection
(xt)t∈D<ω in X, we shall mean weakly null of type II. However, it might be convenient to
use that we may assume it to be weakly null of type I.

Remark 1.2.6. As we already mentioned, in the case that X∗ is separable, we can use a
�xed countable, linearly ordered weak neighborhood base D and, by identifying D with N,
characterize the constants tp(X), ap,n(X), ap(X), θn(X), np,n(X), np(X) using trees indexed
by N<ω or N6n rather than D<ω or D6n. Now, if X is separable and there exists some
1 < p 6∞ such that any of the constants tp(X), ap(X), np(X) is �nite, then Sz(X) 6 ω,
X is Asplund, and X∗ is separable. However, we can use N<ω (resp. N6n) in place of
D<ω (resp. D6n) as index sets to compute the values of these constants only if we already
know that X∗ is separable, because of examples like `1 with the Schur property. So, for
example, once we know p(X) is �nite, we can characterize its value using trees indexed
by N<ω, but we cannot use trees indexed by N<ω to determine whether tp(X) is �nite.

We conclude this subsection with elementary statements that we shall use to stabilize
weakly null trees. Note that the operation described below is actually a pruning.

Proposition 1.2.7. Let (D,6D) be any directed set, F a �nite set, n a natural number,
and f : Dn → F a function. There exists θ : D6n → D6n preserving lengths and initial
segments such that

(i) if θ((U1, . . . , Uk)) = (V1, . . . , Vk), then Uk 6D Vk,

(ii) f ◦ θ|Dn is constant.

Proof. We work by induction. For x ∈ F , let Ix = {U ∈ D : f((U)) = x}. Since
∪x∈F Ix = D and F is �nite, there exists some x ∈ F such that Ix is co�nal in D. This
means that for any U ∈ D, there exists VU ∈ Ix such that U 6D VU . De�ne θ((U)) = (VU)
and note that f ◦ θ|D1 ≡ x.
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Next, assume the result holds for some n and �x f : Dn+1 → F . For each U ∈ D, de�ne
fU : Dn → F by fU((U1, . . . , Un)) = f((U,U1, . . . , Un)). By the inductive hypothesis, there
exist θU : D6n → D6n which preserves lengths and initial segments and satisfying (i) and
(ii). Fix xU ∈ F such that fU ◦ θU |Dn ≡ xU . De�ne g : D1 → F by g((U)) = xU . By the
base case, there exists φ : D1 → D1 satisfying (i) and (ii) with f replaced by g. De�ne
θ : D6n+1 → D6n+1 by θ((U)) = φ(U) and θ((U,U1, . . . , Uk)) = φ(U) a θφ(U)(U1, . . . , Uk).

Corollary 1.2.8. Let (D,6D) be any directed set, (K, d) a totally bounded metric space, n
a natural number, and f : Dn → K a function. For any ε > 0, there exist θ : D6n → D6n

preserving lengths and initial segments and a subset B of K of diameter less than ε such
that

(i) if θ((U1, . . . , Uk)) = (V1, . . . , Vk), then Uk 6D Vk,

(ii) f(θ(t)) ∈ B for all t ∈ Dn.

Proof. Let B1, . . . , Bm be a cover of K by sets of diameter less than ε. De�ne g : Dn →
{1, . . . ,m} by letting g(t) = min{i 6 m : f(t) ∈ Bi}. Apply Proposition 1.2.7 to g.

1.2.2 The properties and their relations

For 1 < p 6 ∞, we let Tp denote the class of Banach spaces X such that tp(X) < ∞.
The classes Ap and Np are de�ned similarly using ap and np. We let Pp =

⋂
1<r<p Tr. We

let D1 denote the class of all Banach spaces the Szlenk index of which does not exceed ω.
We now present the following alternative descriptions of each class. We have chosen to
quickly indicate the easy arguments, to give precise references for others and to detail the
new ones. We give this overview, insisting on the renorming characterizations, as they
are crucial for our non-linear applications.

We start with the description of Tp. The next theorem is the main result from [26].
We brie�y explain the easy implications and emphasize the key part of the proof.

Theorem 1.2.9. Fix 1 < p 6 ∞ and let q be conjugate to p. Let X be a Banach space.
The following are equivalent

(i) X ∈ Tp.

(ii) There exists a constant c > 0 such that for any weak neighborhood base D at 0 in X
and any weakly null (xt)t∈D<ω ⊂ BX , there exists τ ∈ Dω such that ‖(xτ |i)∞i=1‖wq 6 c.

(iii) X is p-AUS-able (resp. AUF-able if p =∞).

(iv) There exist an equivalent norm | · | on X and c > 0 such that for each ε ∈ [0, 1],

sε(B
|·|
X∗) ⊂ (1− cεq)B|·|X∗. In other words, θ

∗
|·|(ε) ≥ cεq

Proof. The equivalence between (i) and (ii) follows immediately from our discussions on
winning strategies in the T (c, p) game. More precisely, tp(X) is the in�mum of those c
for which (ii) holds.
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The equivalence between (iii) and (iv) is a immediate consequence of the duality
Proposition 1.2.2.

We now detail the rather simple implication (iii)⇒ (i) and assume, as we may, that X
is p-AUS. We look at 1 < p <∞ and p =∞ separately. First consider the case 1 < p <∞.
We note that supσ>0 ρX(σ)/σp <∞ if and only if there exists a constant C > 1 such that
for any x ∈ X and σ > 0, there exists a weak neighborhood U of 0 in X such that for
any y ∈ U ∩BX , ‖x+ σy‖p 6 ‖x‖p +Cpσp + ε. A �nite net argument yields that for any
compact G ⊂ X and ε > 0, there exists a weak neighborhood U of 0 such that for any
x ∈ G, any scalar b with |b| 6 1, and any y ∈ U ∩ BX , ‖x+ by‖p 6 ‖x‖p + Cp|b|p. Using
this fact, for ε > 0, we can de�ne a winning strategy for Player I in the T (C + ε, p) game
by �xing (εi)

∞
i=1 ⊂ (0, 1). Player I's initial choice U1 is arbitrary. Once U1, x1, . . . , Un, xn

have been chosen, let

G =
{ n∑
i=1

bixi : (bi)
n
i=1 ∈ B`np

}
and choose Un+1 such that for any x ∈ G, y ∈ Un+1 ∩ BX , and any b with |b| 6 1,
‖x + by‖p 6 ‖x‖p + Cp|b|p + εn+1. This completes the recursive construction. For any
m ∈ N and (bi)

m
i=1 ∈ B`mp ,∥∥∥ m∑
i=1

bixi

∥∥∥p 6 ∥∥∥m−1∑
i=1

bixi

∥∥∥p + Cp|bm|p + εm

6
∥∥∥m−2∑
i=1

bixi

∥∥∥p + Cp|bm−1|p + Cp|bm|p + εm−1 + εm

6 Cp

m∑
i=1

|bi|p +
m∑
i=1

εi 6 Cp +
∞∑
i=1

εi.

If
∑∞

i=1 εi was chosen small enough, depending on the modulus of continuity of the function
t 7→ t1/p on [0, C + 1], this strategy is a winning strategy for Player I in the T (C + ε, p)
game. Therefore X has Tp. For the p = ∞ case, the argument is similar, except there
exists a constant C such that for any x ∈ X and σ > 0, there exists a weak neighborhood
U of 0 such that for any y ∈ U ∩BX , ‖x+ σy‖ 6 max{‖x‖, Cσ}.

Finally, we refer the reader to [26] for the di�cult implication (i)⇒ (iv).

We now turn to the characterizations of Ap. Note that item (iii) is a completely new
characterization. For that reason we recall the old arguments and detail the new ones.
As we will see later, A∞ = N∞, so we limit ourselves to p ∈ (1,∞) in the next statement.

Theorem 1.2.10. Fix 1 < p <∞ and let q be conjugate to p. Let X be a Banach space.
The following are equivalent

(i) X ∈ Ap.

(ii) There exists a constant c > 0 such that for any weak neighborhood base D at 0 in
X, any n ∈ N, and any weakly null (xt)t∈D6n ⊂ BX , there exists t ∈ Dn such that
‖(xt|i)ni=1‖wq ≤ c.
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(iii) There exist a constant M ≥ 1 and a constant C > 0, such that for any τ ∈ (0, 1]
there exists a norm | | on X satisfying M−1‖x‖X ≤ |x| ≤M‖x‖X for all x ∈ X and

∀σ ≥ τ, ρ| |(σ) ≤ Cσp.

(iv) X has q-summable Szlenk index.

Proof. The equivalence between (i) and (ii) follows again from our initial discussion on
games.

The implication (ii)⇒ (iii) is new. Let us prove it. Fix 1 < p <∞. Suppose that X
is a Banach space and a > 1 is such that for each n ∈ N and (xt)t∈D6n ⊂ BX weakly null,
there exists t ∈ Dn such that for all scalar sequences (ai)

n
i=1,∥∥∥ n∑

i=1

aixt|i

∥∥∥p 6 ap
n∑
i=1

|ai|p.

We �rst note that for any x ∈ X, n ∈ N, and (xt)t∈D6n ⊂ BX weakly null, there exists
t ∈ Dn such that for all scalar sequences (ai)

n
i=1,∥∥∥x+

n∑
i=1

aixt|i

∥∥∥p 6 (2a)p
[
‖x‖p +

n∑
i=1

|ai|p
]
. (1.1)

Indeed, for an appropriate branch t, it holds that∥∥∥x+
n∑
i=1

aixt|i

∥∥∥p 6 2p max
{
‖x‖p,

∥∥∥ n∑
i=1

aixt|i

∥∥∥p}
6 (2a)p max

{
‖x‖p,

n∑
i=1

|ai|p
}
6 (2a)p

[
‖x‖p +

n∑
i=1

|ai|p
]
.

Let now A = 2a. Set f0(x) = ‖x‖
A

and for n ∈ N, de�ne

fn(x) =

[
sup
(xt)

inf
t

sup
(ai)

1

Ap

∥∥∥x+
n∑
i=1

aixt|i

∥∥∥p − n∑
i=1

|ai|p
]1/p

,

where the outer supremum is taken over all weakly null collections (xt)t∈D6n in BX , the
in�mum is taken over t ∈ Dn, and the inner supremum is taken over all scalar sequences
(ai)

n
i=1. It follows from taking xt = 0 for all t that fn(x) > ‖x‖

A
for all x ∈ X and n ∈ N.

On the other hand, it follows from (1.1) that fn(x) 6 ‖x‖ for all n ∈ N. We also have that
fn(cx) = |c|fn(x), for each n ∈ N ∪ {0}, each x ∈ X, and each scalar c. Let us detail this
last fact. It is clear that fn(0) = 0, so assume c 6= 0. It is also clear that f0(cx) = |c|f0(x).
Then we �x n ∈ N, x ∈ X and n ∈ N. For an arbitrary (xt)t∈D6n ⊂ BX weakly null and
b > fn(x), there exists t ∈ Dn such that for all (ai)

n
i=1,

1

Ap

∥∥∥x+
n∑
i=1

aixt|i

∥∥∥p − n∑
i=1

|ai|p 6 bp.
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Then

1

Ap

∥∥∥cx+
n∑
i=1

aixt|i

∥∥∥p − n∑
i=1

|ai|p

= |c|p
[ 1

Ap

∥∥∥x+
n∑
i=1

c−1aixt|i

∥∥∥p − n∑
i=1

|c−1ai|p
]
6 |c|pbp.

Since this holds for any (xt)t∈D6n ⊂ BX weakly null, it holds that fn(cx) 6 |c|fn(x).
Repeating the argument, we deduce that fn(x) = fn(c−1cx) 6 |c|−1fn(cx), which gives
the reverse inequality.

The key step will be to show the following: for each n ∈ N∪{0}, each weakly null net
(xU)U∈D ⊂ BX , and each σ > 0,

lim sup
U

fn(x+ σxU)p 6 fn+1(x)p + σp. (1.2)

So assume η < lim sup
U

fn(x+σxU)p. By passing to a subnet and relabeling, we can assume

η < fn(x + σxU)p for all U . For each U , we �nd (xUt )t∈D6n ⊂ BX weakly null such that
for each t ∈ Dn, there exists (ai)

n
i=1 such that

1

Ap

∥∥∥x+ σxU +
n∑
i=1

aix
U
t|i

∥∥∥p − n∑
i=1

|ai|p > η.

We de�ne the weakly null collection (xt)t∈D6n+1 ⊂ BX by letting x(U) = xU and x(U,U1,...,Uk) =
xU(U1,...,Uk) for 1 6 k 6 n. By the de�nition of fn+1(x)p, for any ε > 0, there exists s ∈ Dn+1

such that for all (bi)
n+1
i=1 ,

1

Ap

∥∥∥x+
n+1∑
i=1

bixs|i

∥∥∥p − n+1∑
i=1

|bi|p 6 fn+1(x)p + ε.

Write s = (U,U1, . . . , Un) and let t = (U1, . . . , Un). Then there exists (ai)
n
i=1 such that,

combining this paragraph with the previous and letting b1 = σ and bi+1 = ai for 1 6 i 6 n,
it holds that

η <
1

Ap

∥∥∥x+ σxU +
n∑
i=1

aix
U
s|i

∥∥∥p − n∑
i=1

|ai|p

=
1

Ap

∥∥∥x+
n+1∑
i=1

bixs|i

∥∥∥p − n+1∑
i=1

|bi|p + σp 6 fn+1(x)p + ε+ σp.

Therefore η < fn+1(x)p + ε+σp. Since η < lim sup
U

fn(x+σxU)p and ε > 0 were arbitrary,

we have proved (1.2).
The next step is to average the fpn's. So, �x N ∈ N and de�ne

gN(x)p =
1

N

N−1∑
n=0

fn(x)p.
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Clearly, we still have that for all x ∈ X and N ∈ N, ‖x‖
A

6 gN(x) 6 ‖x‖ and gN(cx) =
|c|gN(x) for all scalars c. Then, applying (1.2) for each n ∈ {0, . . . , N − 1}, we obtain
that for any weakly null net (xU)U∈D ⊂ BX , any N ∈ N, and x ∈ ABX ,

lim sup
U

gN(x+ σxU)p 6 gN(x)p + σp +
Ap

N
. (1.3)

The last stage of the proof is to �convexify� our function gN . For that purpose, we set

|x|N = inf
{ n∑
i=1

gN(xi) : n ∈ N, x =
n∑
i=1

xi

}
,

which de�nes an equivalent norm on X satisfying ‖x‖
A

6 |x|N 6 ‖x‖. Moreover, B|·|NX is
the closed, convex hull of {x ∈ X : gN(x) < 1}. To see the non-trivial implication, it is
enough to notice that if x =

∑n
i=1 xi ∈ X with

∑n
i=1 gN(xi) < 1, then

x =
n∑
i=1

λiyi

where yi =
∑n

j=1 gN (xj)

gN (xi)
xi is such that gN(yi) < 1 and λi = gN (xi)∑n

j=1 gN (xj)
∈ [0, 1] for every

1 ≤ i ≤ n, with
∑n

i=1 λi = 1.
We shall now prove that

∀σ > 0, ρ(X,|·|N )(σ) 6
Ap

p

(
σp +

1

N

)
. (1.4)

First we �x y ∈ X such that gN(y) < 1. From this it follows that ‖y‖ 6 A. Fix σ > 0

and (yU)U∈D ⊂ B
|·|N
X weakly null, de�ne xU = A−1yU ∈ BX , so (xU)U∈D ⊂ BX is weakly

null. Then we apply (1.3) to get

lim sup
U
|y + σyU |pN 6 lim sup

U
gN(y + σAxU)p

6 gN(y) + σpAp +
Ap

N
< 1 + σpAp +

Ap

N
.

Therefore, thanks to the inequality (1 + t)1/p ≤ 1 + t/p,

lim sup
U
|y + σyU |N − 1 6

(
1 + σpAp +

Ap

N

)1/p − 1 6
Ap

p

(
σp +

1

N

)
.

Next �x x ∈ B|·|NX . As noted above, B|·|NX is the closed, convex hull of {y ∈ X : gN(y) <
1}. Therefore for each ε > 0, we can �nd y1, . . . , yk ∈ X with gN(yi) < 1 and convex
coe�cients w1, . . . , wk such that |x−

∑k
i=1wiyi|N < ε. Then

lim sup
U
|x+ σyU |N − 1 6 ε+ lim sup

U

k∑
i=1

wi(|yi − σyU |N − 1)

6 ε+
k∑
i=1

wi

(Ap
p

(
σp +

1

N

))
= ε+

Ap

p

(
σp +

1

N

)
.
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Since ε > 0 was arbitrary, this �nishes the proof of (1.4).
Finally, it is clear, by taking N large enough in (1.4), that for any τ > 0 there exists an

equivalent norm | · | on X such that ‖x‖
A

6 |x| 6 ‖x‖ and for any σ > τ , ρ(X,|·|)(σ) 6 Ap
1

p
σp.

We have proved that X satis�es (iii).
Next we prove (iii) ⇒ (iv), which is also new. So assume (iii) is satis�ed. Then, it

follows from Proposition 1.2.2 that there exists γ ∈ (0, 1] so that for any t0 ∈ (0, 1] there
exists a norm | | on X satisfying

∀x ∈ X, M−1‖x‖X ≤ |x| ≤M‖x‖X and ∀t ∈ [t0, 1], θ
∗
| |(t) ≥ γtq.

Fix now ε1, . . . , εn ∈ (0, 1] and pick an equivalent norm | | as above for t0 = min{ ε1
4M2 , . . . ,

εn
4M2}.

Assume that sε1 . . . sεnBX∗ is not empty. Then sε1 . . . sεn(MB| |∗) is non empty and by
homogeneity, so is s ε1

M
. . . s εn

M
(B| |∗). Thus, if we denote σε the Szlenk derivation on X∗

where the diameter is taken with respect to the norm | |, we have that σ ε1
M2

. . . σ εn
M2
B| |∗

is non empty. Then classical manipulations on the Szlenk derivation imply that

1

2
B| |∗ ⊂ σ ε1

4M2
. . . σ εn

4M2
B| |∗ ⊂

n∏
k=1

(
1− γεqk

4qM2q

)
B| |∗ .

The argument for the �rst inclusion can be found in [71] (proof of Proposition 3.3) and
the second inclusion follows from the de�nition of θ

∗
| | and homogeneity. Finally we use

the fact that t ≤ − log(1 − t), for t ∈ [0, 1) and elementary calculus to deduce that∑n
k=1 ε

q
k ≤ 4qM2q

γ
log 2. This �nishes the proof.

We now turn to (iv) implies (ii). This was already proved in [25] in a more general
setting. We include the simpler proof in our situation for the sake of clarity. So, let M be
such that if ε1, . . . , εn > 0 are such that sε1 . . . sεn(BX∗) 6= 0, then

∑n
i=1 ε

q
i 6 M q. Let D

be a weak neighborhood base of 0 in X and assume that c > 0 is such that, for some n ∈ N
and (xt)t∈D6n weakly null in BX we have that for each t ∈ Dn, there exists (ai)

n
i=1 ∈ B`np

satisfying ‖
∑n

i=1 aixt|i‖ > c. For each t ∈ Dn, �x x∗t ∈ BX∗ and (ati)
n
i=1 ∈ B`np such that

Re x∗t
( n∑
i=1

atixt|i

)
=
∥∥∥ n∑
i=1

atixt|i

∥∥∥ > c.

De�ne f : Dn → B`n∞ by letting f(t) = (x∗t (xt|1), . . . , x
∗
t (xt|n)). Fix δ > 0 arbitrary. By

Corollary 1.2.8, there exist (bi)
n
i=1 ∈ B`n∞ and θ : Dn → Dn preserving lengths and initial

segments such that for all t ∈ Dn and 1 6 i 6 n,

(i) if θ((U1, . . . , Uk)) = (V1, . . . , Vk), then Vk ⊂ Uk, and

(ii) |x∗θ(t)(xθ(t)|i)− bi| < δ.

By replacing xs with xθ(s) and x∗t with x∗θ(t) for each s ∈ D6n and t ∈ Dn, we can
relabel and assume that the original collections (xt)t∈D6n and (x∗t )t∈Dn ⊂ BX∗ satisfy this
property.

De�ne εi = max{0, |bi|−2δ} for each 1 6 i 6 n. We will prove that for each 0 6 j 6 n
and t ∈ Dn−j, there exists x∗ ∈ sεn−j+1

. . . sεn(BX∗) (that depends on t), and if j < n,
this x∗ can be chosen such that for each 1 6 i 6 n− j, |x∗(xt|i)− bi| 6 δ. We prove this
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claim by induction on j. By convention, in the j = 0 case, sεn+1sεn(BX∗) = BX∗ and we
just take x∗ = x∗t ∈ BX∗ . Next, assume the result holds for some 0 6 j < n. By the
inductive hypothesis, for each t ∈ Dn−j−1 and U ∈ D, since t a (U) ∈ Dn−j, there exists
x∗U ∈ sεn−j+1

. . . sεn(BX∗) such that for each 1 6 i 6 n − j − 1, |x∗U(xt|i) − bi| 6 δ and
|x∗U(x|ta(U))− bn−j| 6 δ. If εn−j = 0, we pick any U in D and set x∗ = x∗U . Note that the
conclusions are satis�ed, since, by convention

x∗U ∈ sεn−j+1
. . . sεn(BX∗) = sεn−j

sεn−j+1
. . . sεn(BX∗).

Consider now the case εn−j > 0. If x∗ is any weak∗-cluster point of (x∗U)U∈D, then clearly
|x∗(xt|i)− bi| 6 δ for each 1 6 i 6 n− j − 1. Note also that, since (xta(U))U∈D is weakly
null, there exists U0 ∈ D such that for all U ⊂ U0, |x∗(xta(U))| < δ. This implies that

∀U ⊂ U0, ‖x∗U − x∗‖ ≥ |(x∗U − x∗)(xta(U))| > |bn−j| − 2δ = εn−j.

We now use that x∗ is a weak∗-cluster point of (x∗U)U⊂U0 ⊂ sεn−j+1
. . . sεn(BX∗) to deduce

that x∗ ∈ sεn−j
. . . sεn(BX∗) and |x∗(xt|i)− bi| 6 δ. This �nishes the inductive proof of our

claim. Applying this claim for j = n yields the existence of some x∗ ∈ sε1 . . . sεn(BX∗),
from which it follows that

∑n
i=1 ε

q
i 6 M q. We can now use this information to estimate

the constant c. We de�ne I = {i 6 n : |bi| > 2δ}. Then, for any t ∈ Dn,

c < Re x∗t
( n∑
i=1

atixt|i

)
6 δn+

n∑
i=1

|ati||bi| 6 3δn+
∑
i∈I

|ati||bi|

6 5δn+
∑
j∈I

|ati|εi 6 5δn+ ‖(ati)i∈I‖`np‖(εi)i∈I‖`nq 6 5δn+M.

Since δ > 0 was arbitrary, we conclude that c 6 M . This �nishes the proof of this last
implication.

Next we describe the class Np. A more general version of the following result is proved
in [28].

Theorem 1.2.11. Fix 1 < p 6∞ and let q be conjugate to p. Let X be a Banach space.
The following are equivalent.

(i) X ∈ Np.

(ii) There exists a constant K > 0 such that for any n ∈ N and any weakly null collection
(xt)t∈D≤n in BX , there exists t ∈ Dn such that ‖

∑n
i=1 xt|i‖ ≤ Kn1/p.

(iii) There exists a constant M ≥ 1 and a constant c > 0 such that for each σ ∈ (0, 1],
there exists a norm | | on X such that M−1|x| ≤ ‖x‖X ≤M |x| for all x ∈ X and

(a) if 1 < p <∞, ρ| |(σ) 6 cσp

(b) if p =∞, ρ| |(c) 6 σ.

(iv) There exists a constant C > 0 such that Cz(X, ε) ≤ Cε−q, for all ε ∈ (0, 1).
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Proof. Again, the equivalence between (i) and (ii) follows from our initial discussion on
games.

The argument for (ii)⇒ (iii) is an adaptation of the proof of Theorem 4.2 in [46] to
the non-separable case. We refer the reader to the part of this thesis coming from [30] or
to [28].

Let us brie�y explain the simple implication (iii) ⇒ (ii). Let us assume, as we may,
that ‖ ‖ satis�es (iii) for σ = 1

2
. We shall show the existence of a constantK ≥ 2 such that

(ii) is satis�ed. Let (xt)t∈D≤n be a weakly null tree in BX . Pick t ∈ D≤n such that 2 <
‖
∑k

i=1 xt|i‖ ≤ 3 for some k (if this is not possible we are done). Now we pick recursively
Uk+1, . . . , Un so that for all k < l ≤ n, we have, if we denote s = t a (Uk+1, · · ·Un),
‖
∑l

i=1 xs|i‖ > 2 and ‖
∑l

i=1 xs|i‖ ≤ ‖
∑l−1

i=1 xs|i‖(1 + 2c2−p). It now follows from classical
use of Orlicz functions (see for instance the proof of Theorem 6.1 in [67]) that there exists
a constant K > 0 so that ‖

∑n
i=1 xt|i‖ ≤ Kn1/p.

We recall that Pp is de�ned to be
⋂

1<r<p Tr. Then we have.

Theorem 1.2.12. Fix 1 < p 6∞ and let q be conjugate to p. Let X be a Banach space.
The following are equivalent

(i) X ∈ Pp.

(ii) For each 1 < r < p, X is r-AUS-able.

(iii) There exists an equivalent norm | · | on X such that for all 1 < r < p, X is r-AUS.

(iv) For each 1 < r < p, θn(X) = o(n1/r) (de�ned before Remark 1.2.3).

(v) p(X) = lim
ε→0+

logSz(X,ε)
| log(ε)| 6 q.

Proof. The equivalence between (i) and (ii) follows from Theorem 1.2.9. The fact that
(ii) implies (v) follows from Proposition 1.2.2 and the existence of a universal constant
C ≥ 1 such that

∀ε ∈ (0, 1), Sz(X, ε) ≤ C
(
δ
∗
X

( ε
C

))−1

.

The implication (v)⇒ (iii) is proved in [27] in a very general setting (non-separable, for
higher ordinals and operators). Obviously (iii) implies (ii). The implication (ii) ⇒ (iv)
also follows from Theorem 1.2.9. Finally (iv) ⇒ (ii) relies on an averaging of the norms
provided by (iii) in Theorem 1.2.11.

We �nally summarize what is known about the inclusions between these classes.

Theorem 1.2.13. Recall that D1 denotes the class the of all Banach spaces with Szlenk
index at most ω. Then

(i) D1 =
⋃

1<p6∞ Tp =
⋃

1<p6∞ Ap =
⋃

1<p6∞ Np =
⋃

1<p6∞ Pp.

(ii) For 1 < p <∞, Tp ( Ap ( Np ( Pp.

(iii) T∞ ( A∞ = N∞ ( P∞.
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Proof. Let 1 < p ≤ ∞. We clearly have that Tp ⊂ Ap ⊂ Np ⊂ Pp. It follows from (iii) in
Theorem 1.2.9 and (ii) in Theorem 1.2.12 that Pp ⊂ D1. We have already explained that
if X ∈ D1, then p(X) <∞, so Theorem 1.2.12 implies that X ∈ Tr, for some 1 < r < p.
Our statement (i) follows from gathering all these pieces of information.

The fact that the inclusions are strict in (ii), as well as T∞ 6= A∞ = N∞ 6= P∞ are
proved in [28].

1.2.3 Separable determination

We start with a simple but fundamental statement about selecting weakly null sequences
from weakly null nets in AUS-able Banach spaces.

Proposition 1.2.14. Let X be a Banach space with Sz(X) 6 ω. Let D be a weak
neighborhood base at 0 in X. For any (xU)U∈D ⊂ BX such that xU ∈ U for all U ∈ D,
there exists a function f : N→ D such that (xf(n))

∞
n=1 is a weakly null sequence.

Proof. Since Sz(X) 6 ω, X ∈ Tr for some 1 < r <∞. Let 1/r + 1/s = 1 and c > tr(X).
Let φ be a winning strategy for Player I in the T (c, r) game. Let V1 be determined by
φ and �x U1 ∈ D such that U1 ⊂ V1. Let Player II choose xU1 ∈ U1 ∩ BX . Let V2 be
determined by φ and �x U2 ∈ D such that U2 ⊂ V2. Let Player II choose xU2 ∈ U2 ∩BX .
Continue in this way until U1, U2, . . . have been chosen. De�ne f(n) = Un and note that
‖(xf(n))

∞
n=1‖ws = ‖(xUn)∞n=1‖ws 6 c <∞. Therefore (xf(n))

∞
n=1 is weakly null.

We are now ready to give a uni�ed proof of the separable determination of all the
properties considered in this chapter. Before we state it, let us mention that summable
Szlenk index and having power type Szlenk index was proved to be separably determined
by Draga and Kochanek in [36].

Theorem 1.2.15. If X is a Banach space with Sz(X) 6 ω, then for each 1 < p 6∞,

tp(X) = sup{tp(E) : E 6 X is separable},

and this supremum is attained, although possibly in�nite. The same is true of ap(X),
np(X), and θn(X). In particular, if X is a Banach space all of whose separable subspaces
lie in Tp, then X lies in Tp. The same conclusion holds for Ap, Np, Pp and D1.

Proof. It is clear that tp(X) > sup{tp(E) : E 6 X is separable}. If c < tp(X), then there
exists a weakly null collection (xt)t∈D<ω such that for each τ ∈ Dω, ‖(xτ |i)∞i=1‖wq > c.

First, we build ϕ : N<ω → D<ω which preserves lengths and immediate predecessors
such that (xϕ(t))t∈N<ω is weakly null. We de�ne ϕ(t) by induction on |t|. By Proposition
1.2.14 applied to (x(U))U∈D, there exists f : N → D such that (x(f(n)))

∞
n=1 is weakly

null. De�ne ϕ((n)) = (f(n)). Next, if ϕ(t) has been de�ned, apply Proposition 1.2.14
to (xϕ(t)a(U))U∈D to select g : N → D such that (xϕ(t)a(g(n)))

∞
n=1 is weakly null. De�ne

ϕ(t a (n)) = ϕ(t) a (g(n)). This completes the construction.
De�ne yt = xϕ(t). It follows that for any τ1 ∈ Nω, there exists a unique τ ∈ Dω such

that ϕ(τ1|i) = τ |i for all i ∈ N, so that

‖(yτ1|i)∞i=1‖wq = ‖(xτ |i)∞i=1‖wq > c.
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Therefore if F is the closed linear span of (yt)t∈N<ω , then tp(F ) > c. This shows that
tp(X) 6 sup{tp(E) : E 6 X is separable}. Next, let R denote the set of rational numbers
r such that tp(X) > r. For each r ∈ R, let Fr be a separable subspace of X such that
tp(Fr) > r, and let E be the closed span of Er, r ∈ R. Then tp(E) = tp(X), and the
supremum is attained. The arguments for ap(X), np(X), θn(X) are similar.

If X is a Banach space all of whose separable subspaces lie in Tp ⊂ D1, then tp(X) =
sup{tp(E) : E 6 X is separable} must be �nite. Indeed, if the supremum were in�nite,
then since it is attained, there would exist some separable E 6 X such that tp(E) =∞,
and E does not belong to Tp. Similar arguments hold for Ap and Np.

For Pp, we note that

X ∈ Pp ⇔ (∀1 < r < p)(X ∈ Tr)

⇔ (∀1 < r < p)(∀E 6 X separable)(E ∈ Tr)

⇔ (∀E 6 X separable)(∀1 < r < p)(E ∈ Tr)

⇔ (∀E 6 X separable)(E ∈ Pp)

Assume now that X is not in D1. Then, for any p ∈ Q ∩ (1,∞), X does not belong
to Tp. So for any p ∈ Q∩ (1,∞), there exists a separable subspace Ep of X so that Ep is
not in Tp. Then the closed linear span of these Ep's is a separable subspace of X which
does not belong to D1.



Chapter 2

Hamming graphs and concentration

properties in non-quasi-re�exive

Banach spaces

In this chapter, we study some concentration properties for Lipschitz maps de�ned on
Hamming graphs with values in Banach spaces. We investigate their stability under some
general sums of Banach spaces, including `p-sums. As an application, we extend a result of
Causey on the coarse Lipschitz structure of quasi-re�exive spaces satisfying upper `p tree
estimates to the setting of `p-sums of such spaces. Our result provides us with a tool for
constructing the �rst examples of Banach spaces that are not quasi-re�exive but neverthe-
less admit some concentration inequality. We also give a su�cient condition for a space to
be asymptotic-c0 in terms of a concentration property, as well as relevant counterexamples.

Let us brie�y describe the content of this chapter. We start by de�ning the Hamming
graphs and the concentration properties that will be studied. In a second section, we prove
our main result, Theorem B, in order to exhibit the �rst non-quasi-re�exive space that
cannot equi-Lipschitz contain the Hamming graphs and we raise a few questions. Finally,
we prove that a Banach space that has the concentration property HC∞ is asymptotic-c0

and we use a result of Schlumprecht to deduce the existence of a separable asymptotic-c0

dual space that does not have any of the concentration properties we will introduce. This
chapter is based on [40].

2.1 De�nitions and notation

2.1.1 Hamming graphs

Before introducing the concentration properties, we need to de�ne special metric graphs
that we shall call Hamming graphs. Let M be an in�nite subset of N. We denote by [M]ω

the set of in�nite subsets of M. For M ∈ [N]ω and k ∈ N, let

[M]k = {n = (n1, . . . , nk) ∈Mk;n1 < · · · < nk},

[M]≤k =
k⋃
j=1

[M]j ∪ {∅},

35
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and

[M]<ω =
∞⋃
k=1

[M]k ∪ {∅}.

Let us point out the fact that we will identify some M ∈ [M]<ω ∪ [M]ω to its increasing
enumeration.
Then we equip [M]k with the Hamming distance:

dH(n,m) = |{j;nj 6= mj}|

for all n = (n1, . . . , nk),m = (m1, . . . ,mk) ∈ [M]k.
Let us mention that this distance can be extended to [M]<ω by letting

dH(n,m) = |{i ∈ {1, · · · ,min(l, j)};ni 6= mi}|+ max(l, j)−min(l, j)

for all n = (n1, . . . , nl),m = (m1, . . . ,mj) ∈ [M]<ω (with possibly l = 0 or j = 0).
We also need to introduce Ik(M), the set of strictly interlaced pairs in [M]k:

Ik(M) = {(n,m) ⊂ [M]k;n1 < m1 < · · · < nk < mk}

and, for each j ∈ {1, · · · , k}, let

Hj(M) = {(n,m) ⊂ [M]k;∀i 6= j, ni = mi and nj < mj}.

Note that, for (n,m) ∈ Ik(M), dH(n,m) = k and n ∩m = ∅.

Let us mention that, in this chapter, we will only be interested in the Hamming
distance but originally, when Hamming graphs were used in [67], it could be replaced
(except for their last Theorem 6.1) by the symmetric distance, de�ned by

d∆(n,m) =
1

2
|n4m|

for all n,m ∈ [N]<ω, where n4m denotes the symmetric di�erence between n and m.

2.1.2 De�nitions of concentration properties

In this subsection, we introduce all the concentration properties mentioned in this chapter.
Before doing so, let us recall a version of Ramsey's Theorem we will use several times.

Theorem 2.1.1 (Ramsey's Theorem [94]). Let k ∈ N and A ⊂ [N]k.
There exists M ∈ [N]ω such that either [M]k ⊂ A or [M]k ∩ A = ∅.

The following properties are studied in [67], [74] and [11]. We use the convention
1/∞ = 0.

De�nition 2.1.2. Let (X, d) be a metric space, λ > 0, p ∈ (1,∞].
• We say that X has property λ-HFCp (Hamming Full Concentration) if, for all k ∈ N,
for every Lipschitz function f : ([N]k, dH)→ X, one can �nd M ∈ [N]ω such that

∀n,m ∈ [M]k, d(f(n), f(m)) ≤ λk
1
p Lip(f).
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We say that X has property HFCp if X has property λ-HFCp for some λ > 0.
• We say that X has property λ-HICp (Hamming Interlaced Concentration) if, for all
k ∈ N, for every Lipschitz function f : ([N]k, dH) → X, one can �nd (n,m) ∈ Ik(N)
satisfying

d(f(n), f(m)) ≤ λk
1
p Lip(f).

We say that X has property HICp if X has property λ-HICp, for some λ > 0.

Remark 2.1.3. 1) Let us notice that, by Ramsey's Theorem (Ik(N) can be identi�ed with
[N]2k), a metric space (X, d) has property λ-HICp if and only if, for all k ∈ N, for every
Lipschitz function f : ([N]k, dH)→ X, one can �nd M ∈ [N]ω that satis�es

∀(n,m) ∈ Ik(M), d(f(n), f(m)) ≤ λk
1
p Lip(f).

2) Baudier, Lancien, Motakis and Schlumprecht showed that property HFC∞ is equivalent
for a Banach space to being re�exive and asymptotic-c0, i.e in A∞ (see [11] for the proof of
this result and Section 2.3 or Chapter 1 for a reminder of the de�nition of asymptotic-c0).

We now introduce a property that seems weaker than the previous one but is enough
to prevent the equi-Lipschitz embedding (or equi-coarse embedding for the case p =∞) of
Hamming graphs. We will show later that this property actually coincides with property
HICp, p ∈ (1,∞].

De�nition 2.1.4. Let (X, d) be a metric space, λ > 0, and p ∈ (1,∞]. We say that X
has property λ-HCp if, for all k ∈ N, for every Lipschitz function f : ([N]k, dH)→ X, one
can �nd n,m ∈ [N]k satisfying n ∩m = ∅ and

d(f(n), f(m)) ≤ λk
1
p Lip(f).

We say that X has property HCp if X has property λ-HCp, for some λ > 0.

One can check that all these concentration properties are stable under coarse Lipschitz
embeddings and that properties HFC∞, HC∞ and HIC∞ are even stable under coarse
embeddings, when the embedded space is a Banach space (the key points can be found
in the proof of Proposition 2.1.8).

Let us now introduce the last concentration properties we will study here, more precise
than HCp and HICp, p ∈ (1,∞), where directional Lipschitz constants take part, hence
the �d� in subscript in the acronyms below.

De�nition 2.1.5. Let (X, d) be a metric space, λ > 0, p ∈ (1,∞).
• We say that X has property λ-HFCp,d (resp. λ-HICp,d) if, for every k ∈ N and every
Lipschitz function f : ([N]k, dH)→ X, there exists M ∈ [N]ω such that

d(f(n), f(m)) ≤ λ

(
k∑
j=1

αpj

) 1
p

for all n,m ∈ [M]k (resp. (n,m) ∈ Ik(M)), where, for each j ∈ {1, · · · , k}

αj = sup
(n,m)∈Hj(N)

d(f(n), f(m))
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is the j-th directional Lipschitz constant of f .
We say that X has property HFCp,d (resp. HICp,d) if X has property λ-HFCp,d (resp.
λ-HICp,d), for some λ > 0.
• Similary, we say that X has property λ-HCp,d if, for every k ∈ N and every Lipschitz
function f : ([N]k, dH)→ X, one can �nd n,m ∈ [N]k satisfying n ∩m = ∅ and

d(f(n), f(m)) ≤ λ

(
k∑
j=1

αpj

) 1
p

where the αj, j ∈ {1, · · · , k}, are de�ned as above.
We say that X has property HCp,d if X has property λ-HCp,d, for some λ > 0.

Remark 2.1.6. Let f : ([N]k, dH)→ X be a Lipschitz map, (αj)
k
j=1 its directional Lipschitz

constants. We have
Lip(f) = max

1≤j≤k
αj.

Indeed, the inequality Lip(f) ≥ max
1≤j≤k

αj is clear and if n, m are such that d(f(n), f(m)) =

Lip(f)dH(n,m) with ` = dH(n,m) ≥ 2, then one can �nd s1, . . . , s`−1 ∈ [N]k so that

dH(n, s1) = 1, dH(s`−1,m) = 1, and dH(si, si+1) = 1 for every 1 ≤ i ≤ `− 2.

Thus

Lip(f)dH(n,m) = d(f(n), f(m))

≤ d(f(n), f(s1)) +
`−2∑
i=1

d(f(si), f(si+1)) + d(f(s`−1), f(m))

≤ max
1≤j≤k

αj +
`−2∑
i=1

max
1≤j≤k

αj + max
1≤j≤k

αj

= ` max
1≤j≤k

αj = ( max
1≤j≤k

αj)dH(n,m)

Remark 2.1.7. It is important to note that Theorem 6.1 [67] and Theorem 5.2 [28] can
be rephrased as follows: for p ∈ (1,∞), a re�exive (resp. quasi-re�exive) Banach space
belonging to Ap has property HFCp,d (resp. HCp,d) and a re�exive (resp. quasi-re�exive)
Banach space belonging to Np has property HFCp (resp. HCp). Even though Kalton
and Randrianarivony [67] proved their theorem for re�exive p-AUS Banach spaces, their
proof implicitly contains the latter result. Let us also note that a Banach space with
property HFCp is necessarily re�exive (see [8]). In 2017, Lancien and Raja [74] proved
that all quasi-re�exive p-AUS Banach spaces have property HCp,d. It was later extended
as mentioned by Causey [28].

The stability of these last properties under coarse Lipschitz embeddings when the
embedded space is a Banach space is a bit less clear than for the non-directional case so
we include a proof for completeness.

Proposition 2.1.8. Let p ∈ (1,∞), P ∈ {HFCp,d, HICp,d, HCp,d}, X a Banach space
and (Y, dY ) a metric space.
If Y has property P and X coarse Lipschitz embeds into Y , then X has property P .
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Proof. We only prove the stability of HFCp,d, the proofs for the other two properties are
similar.
Let us assume that Y has property λ-HFCp,d for a λ > 0 and that there exist a map
ϕ : X → Y and A,B,C,D > 0 such that ρϕ(t) ≥ At − B and ωϕ(t) ≤ Ct + D for all
t ≥ 0.
Let k ∈ N, f : ([N]k, dH)→ X a Lipschitz function with Lip(f) > 0.
Without loss of generality, we can assume that, for all j ∈ {1, · · · , k}, we have

αj = sup
(n,m)∈Hj(M)

‖f(n)− f(m)‖ > 0.

Indeed, by Remark 2.1.6, maxj∈{1,··· ,k} αj = Lip(f) > 0 and if αj = 0 for some j ∈
{1, · · · , k}, then the expression of f does not depend on this j

th

coordinate.
Therefore

α = min
1≤j≤k

αj ∈ (0,Lip(f)].

Let us note that ωϕ(t) ≤ (C + D)t for all t ≥ 1 so, for all j ∈ {1, · · · , k} and for all
(n,m) ∈ Hj(N), we have

dY

(
ϕ

(
1

α
f(n)

)
, ϕ

(
1

α
f(m)

))
≤ ωϕ

(αj
α

)
≤ C +D

α
αj.

Now, by assumption on Y , we can �nd M ∈ [N]ω so that

dY

(
ϕ

(
1

α
f(n)

)
, ϕ

(
1

α
f(m)

))
≤ λ(C +D)

α

(
k∑
j=1

αpj

) 1
p

for all n,m ∈ [M]k.
Thus

‖f(n)− f(m)‖ ≤ λ(C +D)

A

(
k∑
j=1

αpj

) 1
p

+
αB

A
≤ λ(C +D) +B

A

(
k∑
j=1

αpj

) 1
p

for all n,m ∈ [M]k. Consequently, X has property HFCp,d.

As promised, the next proposition shows that properties HCp and HICp, p ∈ (1,∞],
are equivalent. This explains why we will only talk about property HC∞ in the last
section.
Before proving this result, let us introduce some vocabulary. Let M ∈ [N]ω. For n,m ∈
[M]k satisfying n ∩m = ∅, we denote by φ the unique increasing bijection from n ∪m
onto {1, · · · , 2k}. If

I = {A ⊂ {1, · · · , 2k}; |A| = k} ,
we say that (n,m) is in position A ∈ I if φ(n) = A.
Thus, we note that the pair (n,m) with n,m ∈ [M]k and n ∩ m = ∅, can be in

(
2k−1
k−1

)
possible di�erent positions if we ask 1 to be in the position (and we can do it without loss
of generality). We denote these positions by Pki (M), i ∈

{
1, · · · ,

(
2k−1
k−1

)}
. Let us remark

that, once a position is �xed, each pair (n,m) in this position can be identi�ed with an
element of [M]2k, which will allow us to use Ramsey's Theorem.



40 CHAPTER 2. HAMMING GRAPHS AND CONCENTRATION PROPERTIES

Proposition 2.1.9. For every p ∈ (1,∞], properties HCp and HICp are equivalent. More
precisely, a metric space with property λ-HICp, for some λ > 0, has property λ-HCp and
a metric space with property λ-HCp has property 2λ-HICp.

Proof. For every p ∈ (1,∞], λ > 0, the implication λ-HICp =⇒ λ-HCp is clear so let us
show the other implication.
We will do it with p =∞, the other cases can be treated similarly.
Let (X, d) be a metric space with property λ-HC∞ for some λ > 0. Let k ∈ N,
f : ([N]k, dH)→ X a Lipschitz function.
For each M ∈ [N]ω, there exist i ∈

{
1, · · · ,

(
2k−1
k−1

)}
and (n,m) ∈ Pki (M) such that

d(f(n), f(m)) ≤ λLip(f).
Let us show that there exist i ∈

{
1, · · · ,

(
2k−1
k−1

)}
and M ∈ [N]ω such that d(f(n), f(m)) ≤

λLip(f) for all (n,m) ∈ Pki (M).
By Ramsey's Theorem, if A1 = {(n,m) ∈ Pk1 (N); d(f(n), f(m)) ≤ λLip(f)} ⊂ Pk1 (N),
there exists M1 ∈ [N]ω such that Pk1 (M1) ⊂ A1 or Pk1 (M1) ∩ A1 = ∅.
If Pk1 (M1)∩A1 = ∅, we apply the same result withA2 = {(n,m) ∈ Pk2 (M1); d(f(n), f(m)) ≤
λLip(f)} ⊂ Pk2 (M1) and we get M2 ∈ [M1]ω such that Pk2 (M2) ⊂ A2 or Pk2 (M2)∩A2 = ∅.
We continue this way inductively.
As X has property λ-HC∞, we cannot repeat this operation for all

(
2k−1
k−1

)
positions so

there exist i ∈
{

1, · · · ,
(

2k−1
k−1

)}
and M ∈ [N]ω such that d(f(n), f(m)) ≤ λLip(f) for all

(n,m) ∈ Pki (M).
Let us show that there exists (n,m) ∈ Ik(N) such that d(f(n), f(m)) ≤ 2λLip(f).
For that, let M = {q1 < q2 < · · · < qj < · · · }.
Now, we just have to observe that we can choose (n, p) ∈ Pki (M) such that n1 < p1 and
n, p ⊂ {q1, q2k+1, · · · , q2k(2k−1)+1}. This leaves us enough space to get an elementm ∈ [M]k

so that (n,m) ∈ Ik(M) and (m, p) ∈ Pki (M).
The result follows from the triangle inequality.

Remark 2.1.10. With a similar proof, we can prove that properties HCp,d and HICp,d are
equivalent.

2.2 Stability under sums

2.2.1 Statements

In order to prove the stability of property HCp,d, p ∈ (1,∞), under `p sums, the idea is
to adapt Braga's proof of Proposition 7.2 in [19] with property HICp,d instead of property
p-Banach-Saks.
To do so, we need the following proposition. We chose to state it with property HICp,d,
which we recall is equivalent to property HCp,d, but the same result can be proved for
property HFCp,d with a similar proof.

Proposition 2.2.1. Let p ∈ (1,+∞), λ > 0, E be a Banach space with a normalized
1-unconditional p-convex basis (en)n∈N with convexity constant 1.
For every n ∈ N and every �nite sequence (Xj)

n
j=1 of Banach spaces having property

λ-HICp,d, the space
(∑n

j=1Xj

)
E
has property (λ+ ε)-HICp,d for any ε > 0.
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Proof. It is enough to prove this result for X = X1

⊕
E

X2.

Let k ∈ N, M ∈ [N]ω, ε > 0, h = (f, g) : ([M]k, dH)→ X a Lipschitz function.
For each j ∈ {1, · · · , k}, let γj = sup

(n,m)∈Hj(M)

‖h(n)− h(m)‖.

There exists ε′ > 0 such that

λp
k∑
j=1

(γj + 2ε′)p ≤ (λ+ ε)p
k∑
j=1

γpj .

Let α1 = inf
M1∈[M]ω

sup
(n,m)∈H1(M1)

‖f(n)− f(m)‖.

There exists M1 ∈ [M]ω so that ‖f(n)− f(m)‖ ≤ α1 + ε′ for every (n,m) ∈ H1(M1).
Let β1 = inf

M′1∈[M1]ω
sup

(n,m)∈H1(M′1)

‖g(n)− g(m)‖.

There exists M′1 ∈ [M1]ω so that ‖g(n)− g(m)‖ ≤ β1 + ε′ for every (n,m) ∈ H1(M′1).
We continue inductively this way until we de�ne αk and βk as follows.
Let αk = inf

Mk∈[M′k−1]ω
sup

(n,m)∈Hk(Mk)

‖f(n)− f(m)‖.

There exists Mk ∈ [M′k−1]ω so that ‖f(n)− f(m)‖ ≤ αk + ε′ for every (n,m) ∈ Hk(Mk).
Let βk = inf

M′k∈[Mk]ω
sup

(n,m)∈Hk(M′k)

‖g(n)− g(m)‖.

There exists M′k ∈ [Mk]
ω so that ‖g(n)− g(m)‖ ≤ βk + ε′ for every (n,m) ∈ Hk(M′k).

• Let us begin by showing that ‖αje1 + βje2‖ ≤ γj for all j ∈ {1, · · · , k}.
For that, assume that there exists j ∈ {1, · · · , k} such that ‖αje1 + βje2‖ > γj. Then,
there exists η > 0 so that ‖(αj − η)e1 + (βj − η)e2‖ > γj by 1-unconditionality.
∗ If there exists (n,m) ∈ Hj(M′k) such that ‖f(n)−f(m)‖ ≥ αj−η and ‖g(n)− g(m)‖ ≥
βj − η, then ‖h(n)− h(m)‖ > γj, which is impossible.
∗ So ‖f(n)− f(m)‖ ≤ αj − η or ‖g(n)− g(m)‖ ≤ βj − η for all (n,m) ∈ Hj(M′k).
Now we note that Hj(M′k) can be identi�ed with [M′k]k+1 so, by Ramsey's Theorem, we get
M′ ∈ [M′k]ω such that ‖f(n)−f(m)‖ ≤ αj−η for all (n,m) ∈ Hj(M′) or ‖g(n)−g(m)‖ ≤
βj − η for all (n,m) ∈ Hj(M′). This contradicts the de�nition of αj or βj.
Thus ‖αje1 + βje2‖ ≤ γj for all j ∈ {1, · · · , k}.
• By assumption, there exists M′ ∈ [M ′

k]
ω so that

‖f(n)− f(m)‖ ≤ λ

(
k∑
j=1

(αj + ε′)p

) 1
p

and ‖g(n)− g(m)‖ ≤ λ

(
k∑
j=1

(βj + ε′)p

) 1
p

for all (n,m) ∈ Ik(M′). Let xn = (αn + ε′)e1 + (βn + ε′)e2 for each n ∈ {1, · · · , k}. Using
p-convexity, we get :

‖h(n)− h(m)‖p ≤ λp
∥∥∥( k∑

j=1

(αj + ε′)p

) 1
p

e1 +

(
k∑
j=1

(βj + ε′)p

) 1
p

e2

∥∥∥p
≤ λp

k∑
n=1

‖xn‖p = λp
k∑
j=1

‖(αj + ε′)e1 + (βj + ε′)e2‖p

≤ λp
k∑
j=1

(γj + 2ε′)p
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for all (n,m) ∈ Ik(M′).
Therefore,

‖h(n)− h(m)‖p ≤ (λ+ ε)

(
k∑
j=1

γpj

) 1
p

,

for all (n,m) ∈ Ik(M′), i.e, X has (λ+ ε)-HICp,d.

Remark 2.2.2. From this property about �nite sums, we can deduce our main result. In
order to do so, let us remark that a Banach space E that has a p-convex basis with
constant 1 satis�es the following: if x ∈ E and (xn)n∈N is a weakly null sequence in E,
then

lim sup ‖x+ xn‖p ≤ ‖x‖p + lim sup ‖xn‖p.
Therefore, we deduce from the proof of Theorem 4.2 [67] that if E is in addition re�exive,
then for every k ∈ N, every M ∈ [N]ω, every ε > 0 and every Lipschitz function f :
([M]k, dH)→ E, there exist M′ ∈ [M]ω and u ∈ E so that

‖f(n)− u‖ ≤

(
k∑
j=1

αpj

) 1
p

+ ε

for all n ∈ [M′]k, where αj = sup
(n,m)∈Hj(M)

‖f(n)− f(m)‖ for all j ∈ {1, · · · , k}.

We now prove Theorem B stated in the introduction, that we recall here.

Theorem 2.2.3. Let p ∈ (1,∞), λ > 0, (Xn)n∈N a sequence of Banach spaces with
property λ-HICp,d.
Let E be a re�exive Banach space with a normalized 1-unconditional p-convex basis (en)n∈N
with convexity constant 1.
Then X =

(∑
n∈NXn

)
E
has property (λ+ 2 + ε)-HICp,d for every ε > 0.

Proof. Let ε > 0, M ∈ [N]ω, k ∈ N, f : ([M]k, dH)→ X a Lipschitz function.
There exists ε′ > 0 such that

(λ+ 2 + ε′)

(
k∑
j=1

αpj

) 1
p

+ 4ε′ ≤ (λ+ 2 + ε)

(
k∑
j=1

αpj

) 1
p

where
αj = sup

(n,m)∈Hj(M)

‖f(n)− f(m)‖

for all j ∈ {1, · · · , k}.
The well-de�ned map

φ :

 X → E

(xn)n∈N 7→
∞∑
n=1

‖xn‖en

satis�es Lip(φ) ≤ 1 and ‖φ(x)‖ = ‖x‖ for all x ∈ X, thus

sup
(n,m)∈Hj(M)

‖φ ◦ f(n)− φ ◦ f(m)‖ ≤ αj
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for every j ∈ {1, · · · , k}.
From the previous remark, we get u ∈ E and M′ ∈ [M]ω such that

‖φ ◦ f(n)− u‖ ≤

(
k∑
j=1

αpj

) 1
p

+ ε′

for all n ∈ [M′]k. Let N ∈ N such that
∥∥∥∑∞k=N+1 ‖uk‖ek

∥∥∥ ≤ ε′.
For each n ∈ N, let us denote by Pn the projection from X onto Xn and Πn the projection
from X onto (

∑n
k=1Xk)E.

We have∥∥∥ ∞∑
n=N+1

‖Pn ◦ f(n)‖en
∥∥∥ ≤ ∥∥∥ ∞∑

n=N+1

‖Pn ◦ f(n)‖en
∥∥∥− ∥∥∥ ∞∑

n=N+1

‖un‖en
∥∥∥+ ε′

≤
∥∥∥ ∞∑
n=N+1

(‖Pn ◦ f(n)‖ − ‖un‖)en
∥∥∥+ ε′

≤ ‖φ ◦ f(n)− u‖+ ε′

≤

(
k∑
j=1

αpj

) 1
p

+ 2ε′

for all n ∈ [M′]k.
Moreover, according to Proposition 2.2.1, we get an in�nite subset M′′ ∈ [M′]ω such that

‖ΠN ◦ f(n)− ΠN ◦ f(m)‖ ≤ (λ+ ε′)

(
k∑
j=1

αpj

) 1
p

for all (n,m) ∈ Ik(M′′).
We deduce

‖f(n)− f(m)‖ ≤ ‖ΠN(f(n)− f(m))‖+ ‖(I − ΠN) ◦ f(n)‖+ ‖(I − ΠN) ◦ f(m)‖

≤ (λ+ ε′)

(
k∑
j=1

αpj

) 1
p

+

(
k∑
j=1

αpj

) 1
p

+ 2ε′ +

(
k∑
j=1

αpj

) 1
p

+ 2ε′

≤ (λ+ 2 + ε)

(
k∑
j=1

αpj

) 1
p

for all (n,m) ∈ Ik(M′′). The result follows.

Remark 2.2.4. With this result and Proposition 2.1.9, we immediately deduce the follow-
ing: if each Xn, n ∈ N, has property λ-HCp,d, then (

∑
n∈NXn)E has property (2λ+2+ε)-

HCp,d for every ε > 0.

Once again, we chose to state this theorem with property HICp,d, but the result stays
true for property HFCp,d, with a similar proof.
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Remark 2.2.5. • Of course, the condition that all spaces have property HICp,d with the
same constant is essential because

([N]<ω, dH) ↪→
L
Xω =

(
∞∑
n=1

`n1 (`2)

)
`2

even though `n1 (`2) has property HFC2,d (it is re�exive and 2-AUS) for every n ∈ N.
To see that, let us note that, for every k ∈ N, ([N]≤k, dH) isometrically embeds into
`k1(`2). Then, the barycentric gluing technique by Baudier (see [6]), which consists in
pasting embeddings of balls of growing radii via good convex combinations, gives us a
bi-Lipschitz embedding from ([N]<ω, dH) into Xω.
• In [18], Braga asked the following (Problem 3.7): if a Banach space X has the Banach-
Saks property, i.e, every bounded sequence in X admits a subsequence whose Cesàro
means converge in norm, does it follow that ([N]<ω, d∆) does not Lipschitz embed into
X? The answer to this question is negative. Indeed, let (pn)n∈N ⊂ (1,∞) be a decreasing
sequence such that lim

n→+∞
pn = 1 and let X = (

∑∞
n=1 `pn)`2 . The space X has the Banach-

Saks property (see [87]). With a similar argument, or simply appealing to Ribe's Theorem
[96] (that states that X is uniformly homeomorphic to X ⊕ `1 and thus implies that `1

coarse Lipschitz embeds into X), we can see that

([N]<ω, dH) ↪→
L
X and ([N]<ω, d∆) ↪→

L
X.

Before we write a direct consequence of this theorem, let us brie�y recall the de�nition
of the James sequence spaces.
Let p ∈ (1,∞). The James space Jp is the real Banach space of all sequences x = (x(n))n∈N
of real numbers with �nite p-variation and verifying limn→∞ x(n) = 0. The space Jp is
endowed with the following norm

‖x‖Jp = sup


(
k−1∑
i=1

|x(pi+1)− x(pi)|p
) 1

p

; 1 ≤ p1 < p2 < · · · < pk

 .

The space J = J2, constructed by James in [55], is the historical example of a quasi-
re�exive Banach space which is isomorphic to its bidual. In fact, J∗∗p can be seen as the
space of all sequences of real numbers with �nite p-variation, which is Jp⊕Re, where e
denotes the constant sequence equal to 1.
Besides of being quasi-re�exive, the space Jp has the property of being p-AUS-able (see
[84], Proposition 2.3) and its dual J∗p is q-AUS-able, where q denotes the conjugate expo-
nent of p (see [73] and references therein).

We can now state the following corollary.

Corollary 2.2.6. Let p, q ∈ (1,∞), p′ the conjugate exponent of p, s = min(p, q) and
t = min(p′, q).
If X is a quasi-re�exive Banach space in Ap, then the space `q(X) has property HCs,d.
In particular, `q(Jp) has property HCs,d and `q(J

∗
p) has property HCt,d.

Let us mention that we stated this corollary for `q-sums but we could have done it with
any re�exive q-convexi�cation of a Banach space with a 1-unconditional basis (such as
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Tq, the q-convexi�cation of Tsirelson space, or Sq, the q-convexi�cation of Schlumprecht
space, see [18] and references therein).

With p = 2, we get that the spaces `2(J) and `2(J∗) have property HC2 and thus cannot
contain equi-Lipschitz copies of Hamming graphs. In fact, property HCp provides more
information than an obstruction to the equi-Lipschitz embedding of Hamming graphs, it
also gives us an estimation of some compression exponents, given by the result below.
Before stating it, we need the following de�nitions.

De�nition 2.2.7. Let X be a Banach space. Following Milman (see [79]), we introduce
the following modulus: for all t ≥ 0, let

δX(t) = inf
x∈SX

sup
Y

inf
y∈SY

(‖x+ ty‖ − 1)

where Y runs through all closed linear subspaces of X of �nite codimension.
We say that ‖ · ‖ is asymptotically uniformly convex (in short AUC) if δX(t) > 0 for all
t > 0. If q ∈ [1,∞), ‖ · ‖ is said to be q-AUC if there is a constant C > 0 such that, for
all t ∈ [0, 1], δX(t) ≥ Ctq.

De�nition 2.2.8. Let q ∈ (1,∞) and X be a Banach space. We say that X has the
q-co-Banach-Saks property if for every semi-normalized weakly null sequence (xn)n∈N in
X, there exist a subsequence (x′n)n∈N of (xn)n∈N and c > 0 such that, for all k ∈ N and
all k ≤ n1 < · · · < nk, we have

‖x′n1
+ · · ·+ x′nk

‖ ≥ ck1/q.

Theorem 2.2.9. Let q < p in (1,∞). Assume X is an in�nite-dimensional Banach space
with the q-co-Banach-Saks property and Y is a Banach space with property HCp. Then X
does not coarse Lipschitz embed into Y . More precisely, the compression exponent αY (X)
of X into Y satis�es the following:
(i) if X contains an isomorphic copy of `1, then αY (X) ≤ 1

p
;

(ii) otherwise, αY (X) ≤ q
p
.

In particular, if X is q-AUC, then αY (X) ≤ q
p
.

We refer the reader to Theorem 3.5 and Corollary 3.6 of [74] for a proof of this result.
Let us note that Proposition 3.2 of [74] also stays true by replacing �quasi-re�exive

AUS� by �having property HCp for some p ∈ (1,∞)�.

We also would like to mention the following: we could de�ne symmetric concentration
properties SFCp, SIPp and SCp, corresponding respectively to properties HFCp, HICp and
HCp by asking the function f to be Lipschitz for the symmetric distance in the de�nitions
of these properties (instead of being Lipschitz for the Hamming distance). Then, it is
known that a re�exive (resp. quasi-re�exive) p-AUS Banach space, for p ∈ (1,∞), would
have property SFCp (resp. SCp). Moreover, even though we wrote our properties HFCp,d,
HICp,d and HCp,d with the letter �H� because the quantities αj, j ∈ {1, · · · , k} can be seen
as directional Lipschitz constants when [N]k is endowed with the Hamming distance, we
could replace �f : ([N]k, dH)→ X Lipschitz� by �f : [N]k → X bounded� in the de�nitions
so that no reference to any speci�c metric is made. With that remark in mind and
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the fact that HCp,d implies SCp, we get that property HCp,d prevents the equi-Lipschitz
embeddings of the symmetric graphs.

Before concluding this subsection with a last result, let us recall some facts that we
will use concerning the spaces Ti∗q, the dual of the q-convexi�cation of the Tirilman space
Ti (see [99], [23], [28] and references therein for more information about this space), and
S∗q , the dual of the q-convexi�cation of Schlumprecht space S (see [97], [28] and references
therein for more information about this space).
If we denote (e∗n)n∈N the coordinate functionals associated with the canonical basis (en)n∈N
of Ti, it is known that (e∗n)n∈N is 1-symmetric and that the formal identity I : `q → Tiq
is bounded and stricty singular (see [28]). As for S∗q , if we denote (f ∗n)n∈N the sequence
of coordinate functionals associated with the canonical basis (fn)n∈N of S and if p and
q are conjugate exponents, it is known (see [28, Proposition 6.5 (iv)]) that for any �nite
non-empty subset E of N,∥∥∥∑

i∈E

f ∗i

∥∥∥
S∗q

≥ |E|1/p log2(|E|+ 1)1/q,

and that (f ∗n)n∈N is 1-subsymmetric.

Proposition 2.2.10. Let p ∈ (1,∞), q its conjugate exponent.
The space Ti∗q has property HFCp but does not have property HCp,d, and the space S∗q has
property HFCs,d for every s ∈ (1, p), but does not have property HCp.

Proof. This space Ti∗q is re�exive and Ti∗q ∈ Np (see [28] Proposition 6.5 (v)) hence it has

property HFCp. Now, for a = (aj)
k
j=1 ∈ B`kp

, we let f :

{
[N]k → Ti∗q
n 7→

∑k
j=1 aje

∗
nj

. This

map satis�es Lip(f) ≤ 2.
Let us assume Ti∗q has property λ-HCp,d for some λ > 0. Then, there exist n,m ∈ [N]k

such that n ∩m = ∅ and∥∥∥ k∑
j=1

aje
∗
j

∥∥∥ = ‖f(n)‖ ≤ ‖f(n)− f(m)‖ ≤ 2λ

because of the 1-symmetry of (e∗j)j∈N. We deduce that the sequence of coordinate func-
tionals (e∗j)j∈N is dominated by the `p basis. This is impossible, by the same argument
used by Causey [28] to prove Ti∗q /∈ Ap (by duality, the Tiq basis would dominate, and
would therefore be equivalent to the `q basis, contradicting the strict singularity of the
formal inclusion I : `q → Tiq, cf. [28, Proposition 6.5 (ii)]).
Then, the space S∗q is re�exive and S∗q ∈ Pp (see the proof of Theorems 6.2, 6.3, case
ξ = 0, and Remark 6.7 in [28]) hence it has property HFCs,d for every s ∈ (1, p). We

de�ne similarly, for a = (aj)
k
j=1 ∈ B`kp

, a 2-Lipschitz map f :

{
[N]k → S∗q
n 7→

∑k
j=1 ajf

∗
nj

.

Now, we may argue as we did for Ti∗q to deduce that, for all (n,m) ∈ Ik(N):

‖f(n)− f(m)‖ ≥ k1/p log2(k + 1)1/q

because of the 1-subsymmetry of the canonical basis and [28, Proposition 6.5 (iv)]. Since
limk→∞ log2(k + 1)1/q =∞, the space S∗q cannot have property HCp.
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2.2.2 Related questions

The following questions about Theorem B come up naturally.

Problem 2.2.11. Can we replace property HFCp,d (resp. HICp,d) by property HFCp
(resp. HICp) in Theorem B?

Problem 2.2.12. Can the conclusion of Theorem B be improved so thatX =
(∑

n∈NXn

)
E

has property (λ+ ε)-HICp,d for every ε > 0?

Problem 2.2.13. If a Banach space X has property HFCp,d (or HICp,d), does Lp(X) have
some concentration property?

Problem 2.2.14. Let p ∈ (1,∞), X a p-AUS Banach space so that X is complemented
in X∗∗ and that X∗∗/X is re�exive and p-AUS-able. Does X have property HCp?

A positive answer to the second question would provide us, for each p ∈ (1,∞), with
an example of a re�exive Banach space, not AUS-able, with property HFCp,d. Indeed,
following Braga's proof of Theorem 7.1 [19], the space Xp,`1,T would be such an example
(see [19] and references therein for more information about this space).

Moreover, let us recall that Kalton proved the existence of a Banach space X that is
not p-AUS-able but that is uniformly homeomorphic to a p-AUS Banach space (see [64]).
Thus, the space X has property HFCp,d, p ∈ (1,∞), even though it is not p-AUS-able.
However, the following problem remains open.

Problem 2.2.15. Is there a Banach space that has property HFCp (or HFCp,d/HCp/HCp,d)
without being AUS-able? If a Banach space X coarse Lipschitz embeds into a Banach
space Y that is re�exive and AUS, does it follow that X is AUS-able?

We will �nish this section by saying a few words about a natural class of spaces to
study here: the Lindenstrauss spaces (see [75]). For any separable Banach space X,
we will denote by ZX the Lindenstrauss space associated to X, constructed so that the
quotient Z∗∗X /ZX is linearly isomorphic to X. In [19], Braga showed that neither Z∗c0 , Z`1
or Z∗X∗ω can have any of the concentration properties we introduced, even though they are
2-AUS-able (see [31]) and do not contain c0 nor `1. The key point of the proof for the
spaces Z∗c0 and Z

∗
X∗ω

is that they satisfy the assumptions of the following proposition, that
can be deduced from [19].

Proposition 2.2.16. Let X be a Banach space such that X∗ is separable.
Assume that there exist A,C ≥ 1, (z∗∗k,j,n)k∈N,j∈{1,··· ,k},n∈N ⊂ CBX∗∗ such that for every
k ∈ N, the map

Fk :


[N]k → X∗∗

n 7→
k∑
j=1

z∗∗k,j,nj

satis�es
1

A
dH(n,m) ≤ ‖Fk(n)− Fk(m)‖ ≤ AdH(n,m)

for all n,m ∈ [N]k.
Then, the space X does not have any of the concentration properties introduced before.
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We can therefore ask ourselves the following question.

Problem 2.2.17. Can we �nd an in�nite-dimensional Banach space X and a p ∈ (1,∞)
such that ZX or Z∗X has property HCp?

Finally, by Aharoni's Theorem [1], we know that the Hamming graphs equi-Lipschitz
embed into Z∗∗c0 /Zc0 . Does it mean that these graphs can be Lipschitz embedded into Z∗∗c0 ?
Into Zc0?

2.3 Asymptotic-c0 spaces

Before stating the last result of this chapter, we recall the de�nition of an asymptotic-c0

space, i.e a space that is in the class A∞ introduced in Chapter 1. The following de�nition
is due to Maurey, Milman and Tomczak-Jaegermann [78].

De�nition 2.3.1. Let X be a Banach space. We denote by cof(X) the set of all its closed
�nite-codimensional subspaces.
For C ≥ 1, we say that X is C-asymptotically c0 if, for any k ∈ N, we have

∃X1 ∈ cof(X) ∀x1 ∈ SX1 ∃X2 ∈ cof(X) ∀x2 ∈ SX2 · · · ∃Xk ∈ cof(X) ∀xk ∈ SXk
,

∀(a1, . . . , ak) ∈ Rk,
∥∥∥ k∑
i=1

aixi

∥∥∥ ≤ C max
1≤i≤k

|ai|

We say that X is asymptotically c0 (or asymptotic-c0) if it is C-asymptotically c0 for some
C ≥ 1.

Let X be a Banach space. A family (x
(i)
j ; i, j ∈ N) ⊂ X is called an in�nite array. For

an in�nite array (x
(i)
j ; i, j ∈ N), we call the sequence (x

(i)
j )j∈N the i-th row of the array.

We call an array weakly null if all rows are weakly null. A subarray of (x
(i)
j ; i, j ∈ N) is

an in�nite array of the form (x
(i)
js

; i, s ∈ N), where (js) ⊂ N is a subsequence. Thus, for a
subarray, we are taking the same subsequence in each row.

The following notion, introduced by Halbeisen and Odell ([51]), is a generalization of
spreading models.

De�nition 2.3.2. A basic sequence (ei)i∈N is called an asymptotic model of a Banach
space X if there exist an in�nite array (x

(i)
j ; i, j ∈ N) ⊂ SX and a null-sequence (εn)n∈N ⊂

(0, 1), so that, for all n ∈ N, all (ai)
n
i=1 ⊂ [−1, 1] and all n ≤ k1 < k2 < · · · < kn,∣∣∣∣∣‖

n∑
i=1

aix
(i)
ki
‖ − ‖

n∑
i=1

aiei‖

∣∣∣∣∣ < εn.

The following proposition concerning this notion was proved in [51].

Proposition 2.3.3 ([51], Proposition 4.1 and Remark 4.7.5). Assume that (x
(i)
j ; i, j ∈

N) ⊂ SX is an in�nite array, all of whose rows are normalized and weakly null. Then

there is a subarray of (x
(i)
j ; i, j ∈ N) which has a 1-suppression-unconditional asymptotic

model (ei)i∈N.
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We call a basic sequence (ei)i∈N c-suppression-unconditional, for some c ≥ 1, if, for
any (ai)i∈N ⊂ c00 and any A ⊂ N, we have :∥∥∥∑

i∈A

aiei

∥∥∥ ≤ c
∥∥∥ ∞∑
i=1

aiei

∥∥∥.
Note that a c-unconditional basic sequence is c-suppression-unconditional and a c-suppression-
unconditional basic sequence is 2c-unconditional.

As for the proof of the fact that every Banach space with property HFC∞ is asymptotic-
c0 (see [11]), the key ingredient will be the following theorem of Freeman, Odell, Sari and
Zheng.

Theorem 2.3.4 ([41], Theorem 4.6). If a separable Banach space X does not contain any
isomorphic copy of `1 and all the asymptotic models generated by normalized weakly null
arrays are equivalent to the c0 unit vector basis, then X is asymptotically c0.

We now have all the tools to prove our result.

Theorem 2.3.5. If a Banach space has property HC∞, then it is asymptotic-c0.

Proof. Let X be a Banach space with property HC∞. Then X has property λ-HIC∞, for
some λ > 0, by Proposition 2.1.9. Let us note that we can assume that X is separable by
Proposition 11 of [36], and that X cannot contain an isomorphic copy of `1 since `1 does
not have this property.
Assume by contradiction that X is not asymptotic-c0. By Theorem 2.3.4, there exists
a 1-suppression-unconditional sequence (ei)i∈N that is not equivalent to the unit vector
basis of c0, and hence λk =

∥∥∥∑k
i=1(−1)iei

∥∥∥↗∞, if k ↗∞, and that is generated as an

asymptotic model of a normalized weakly null array (x
(i)
j ; i, j ∈ N) in X. Let k ∈ N such

that
λ2k

4
> λ, and δ =

λ2k

2
. After passing to appropriate subsequences of the array, we

may assume that, for any 2k ≤ j1 < · · · < j2k and any a1, . . . , a2k ∈ [−1, 1], we have∣∣∣∣∣∥∥∥
2k∑
i=1

aix
(i)
ji

∥∥∥− ∥∥∥ 2k∑
i=1

aiei

∥∥∥∣∣∣∣∣ < δ. (2.1)

De�ne now f(m) = 1
2

∑k
i=1 x

(i)
mi for m = (m1, . . . ,mk) ∈ [N]k. Note that f is 1-Lipschitz

for the metric dH.
Let M ∈ [N]ω, n,m ∈ [M]k such that ((n1, . . . , nk), (m1, . . . ,mk)) ∈ Ik(M) and m1, n1 >
2k. Using equation (2.1), we get that :

‖f(m1, . . . ,mk)− f(n1, . . . , nk)‖ ≥
1

2
λ2k −

δ

2
=
λ2k

4
> λ.

This contradicts the assumption on X. The result follows.

Theorem B and Corollary 2.2.6 provided us with examples of non-quasi-re�exive Ba-
nach spaces having property HCp, for p ∈ (1,∞). In order to obtain a similar result with
p = ∞, it seems natural to consider a T ∗-sum of spaces with λ-HFC∞, λ > 0. However,
as a direct consequence of Theorem 2.3.5, we get the following corollary.
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Corollary 2.3.6. The space T ∗(T ∗), where T ∗ is the original Banach space constructed
by Tsirelson in [98], does not have property HC∞ although it has property HFCp,d for
every p ∈ (1,∞).

Before proving this corollary, let us recall some properties of the space T ∗. First, it
is re�exive, so we will denote its dual by T . This space T ∗ has a normalized, shrinking,
1-unconditional basis (en)∞n=1. Let us denote by (e∗n)n∈N ⊂ T the coordinate functionals
of (en)n∈N. For an element x =

∑∞
n=1 e

∗
n(x)en ∈ X, let us denote by Supp(x) the support

of x, i.e, the subset of integers n such that e∗n(x) 6= 0. The space T satis�es the following
(see [98] and [39]): for every (xi)

n
i=1 ⊂ T with (Supp(xi))

n
i=1 increasing (i.e the supports

are disjoint and consecutive), ‖xi‖ = 1, and Supp(x1) ⊂ [k + 1,∞), we have

∀(ai)ni=1 ⊂ R,
∥∥∥ n∑
i=1

aixi

∥∥∥ ≥ 1

2

n∑
i=1

|ai|.

Proof of Corollary 2.3.6. The lack of property HC∞ is a direct consequence of Lemma
2.7 of [9] (asserting that T ∗(T ∗) is not asymptotic-c0) and Theorem 2.3.5 above. The fact
that T ∗(T ∗) has property HFCp,d, for every p ∈ (1,∞), can be deduced from Theorem 5.9
of [35], applied with p = 1, Xn = T ∗ for all n ∈ N and E = T ∗. Indeed, if we let

p(X) = inf

{
q ≥ 1; X is p-AUS-able,

1

p
+

1

q
= 1

}
for a given Banach space X, Theorem 5.9 [35] asserts that p(T ∗(T ∗)) = 1. As T ∗(T ∗)
is re�exive, the result follows from Theorem 6.1 [67] of Kalton and Randrianarivony (see
the remark after De�nition 2.5).

As property HC∞ prevents the equi-coarse embeddability of the Hamming graphs, we
can therefore ask the following :

Problem 2.3.7. If the Hamming graphs do not equi-coarsely embed into a Banach space
X, does it follow that X is asymptotic-c0?

Moreover, let us note that we only de�ned property HFCp,d (resp. HICp,d, resp. HCp,d)
for p ∈ (1,∞) because, for p =∞, this is exactly the de�nition of property HFC∞ (resp.
HIC∞, resp. HC∞). In the light of Section 2.2, the following question seems natural.

Problem 2.3.8. Does property HC∞ imply quasi-re�exivity?

In addition, as Lindenstrauss spaces provided us with non trivial examples of AUS-
able dual Banach spaces without any concentration property, the following result, due to
Schlumprecht, provides us with a non trivial example of an asymptotic-c0 separable dual
Banach space without any concentration property.

Theorem 2.3.9 (Schlumprecht). Let X be a Banach space whose dual is separable. Then,
there exists an asymptotic-c0 separable dual Banach space ZX such that

Z∗∗X = ZX ⊕X∗.

With this theorem, proved in Section 5 of [40], and arguments of Braga [19], we can
prove the following result, which proof is in the spirit of Proposition 2.2.16.



2.3. ASYMPTOTIC-C0 SPACES 51

Corollary 2.3.10. There exists a separable asymptotic-c0 dual space Z such that there
exists a sequence of equi-Lipschitz functions (fk : [N]2k → Z)k∈N satisfying the following
property: for all ε > 0, all k ∈ N and all n,m ∈ [N]k, there exists i ≥ max(nk,mk) such
that

‖fk(n, n′)− fk(m,m′)‖ ≥ 2d∆(n,m)− ε

for all n′,m′ ∈ [N]k with n′1,m
′
1 > i.

In particular, Z cannot have any of the concentration properties we introduced.

Proof. Let Z = Zc0 given by the previous theorem. It is a separable asymptotic-c0 dual
space. Now, we start by noting that `1 linearly embeds into Z∗∗ hence the existence of a
bounded sequence (z∗∗n )n∈N ⊂ Z∗∗ with the following property

(∗) ∀k ∈ N, ∀(ε1, . . . , εk) ∈ {±1}k,∀(n1, . . . , nk) ∈ [N]k,
∥∥∥ k∑
j=1

εjz
∗∗
nj

∥∥∥ ≥ k.

Let C = supn∈N ‖z∗∗n ‖Z∗∗ . Since Z∗ is separable, by Goldstine's Theorem, for each n ∈ N,
we can �nd a sequence (z(n,m))m∈N ⊂ CBZ such that

z∗∗n = ω∗ − lim
m→∞

z(n,m).

Then, for each k ∈ N, the map

fk :


[N]2k → Z

n 7→
k∑
j=1

z(nj ,nk+j)

satis�es Lip(fk) ≤ 2C. Using weak∗-lower semicontinuity of the norm and (∗), we get the
result.
In particular, this sequence of equi-Lipschitz functions is such that

∀k ∈ N, ∀M ∈ [N]ω,∃(n,m) ∈ I2k(M); ‖fk(n)− fk(m)‖ ≥ 2k − 1

thus Z cannot have any of the concentration properties we introduced.

Remark 2.3.11. Let us mention that Z is a non-quasi-re�exive asymptotic-c0 space that
does not satisfy any of the concentration properties for non-trivial reasons. Indeed, since
Z has the Radon-Nikod�ym property (see [37]) and a separable bidual, it cannot contain
a linear copy of c0, not even a Lipschitz copy of `1.



Chapter 3

Three-space properties and non-linear

stabilities

This is part of a joint work with Ryan Causey and Gilles Lancien (see [30]). This chapter
deals with two di�erent types of results. The �rst kind concerns the three-space problem
and the second kind is about non-linear stability.

In a �rst section, we state and prove those dealing with the three-space problem. We
start by reducing the questions to the separable setting and giving a shorter proof of a
past result by Causey, Draga and Kochanek. Next, with a single counterexample, we
prove that neither Tp, Ap or Np, 1 < p <∞, is a three-space property and we prove that
the assumption of separability can be removed from the result of Johnson and Zippin that
�being separable and in T∞ is a three-space property�. We �nish this section with the
proof of our main result, the fact that being asymptotic-c0, i.e being in A∞, is also one.
That �nishes to solve the three-space problem for the family of asymptotic properties
considered in Chapters 1 and 3.

In a second section, after reminding the reader the previous known results about
non-linear stability concerning the properties at stake in those chapters, we use the char-
acterization of Ap we proved in the �rst chapter to deduce the stability of this class under
coarse-Lipschitz equivalences, when p ∈ (1,∞). We �nish this chapter by gathering a few
examples of T∞ or A∞ spaces and related problems.

3.1 Three-space properties

3.1.1 Introduction

We recall that a property (P ) of Banach spaces is a Three-Space Property (3SP in short)
if it passes to quotients and subspaces and a Banach space X has (P ) whenever it admits
a subspace Y such that Y and X/Y have (P ).

Note �rst that the linear properties considered in this chapter pass easily to subspaces
and quotients.

Proposition 3.1.1. Fix 1 < p 6∞ and X ∈ Ban. If X is in any of the classes Tp,Ap,Np,
or Pp, then any subspace, quotient, or isomorph of X lies in the same class.

52
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Proof. For subspaces and isomorphs, the result is clear. For quotients, the result follows
easily from the dual characterizations of these properties, which clearly pass to weak∗-
closed subspaces of X∗ (we recall that (X/Y )∗ is canonically isometric to Y ⊥ ⊂ X∗ by a
weak∗-weak∗-bi-continuous map).

The following lemma will allow us, when convenient, to reduce our questions to the
separable setting.

Lemma 3.1.2. Let I be a class of Banach spaces which contains all subspaces, quotients,
and isomorphs of its members. Suppose also that membership in I ∩ Sep is a 3SP, and
that if X is a Banach space such that every separable subspace of X lies in I, then X lies
in I. Then membership in I is a 3SP.

Proof. Let X be a Banach space and suppose that Y is a subspace of X such that
Y,X/Y ∈ I. If X is not in I, then there exists a separable subspace E of X such that E is
not in I. Fix a countable, dense subset S of E and for each x ∈ S, �x a countable subset
Rx of Y such that

‖x‖X/Y = inf
y∈Rx

‖x− y‖.

Let G denote the closed linear span of

E ∪
⋃
x∈S

Rx

and let F denote the closed linear span of
⋃
x∈S Rx. Then F,G are separable and F , being

a subspace of Y , lies in I∩Sep. Moreover, it follows from the construction of G that G/F
is isometric to a subspace of X/Y , which means G/F also lies in I∩Sep. Therefore G lies
in I, as does E 6 G. Therefore every separable subspace of X lies in I, as does X.

3.1.2 Past results

It was shown by Causey, Draga, Kochanek in [29] that membership in Pp is a 3SP, although
it was not stated in this way. We isolate here a shorter and more direct argument. We
will show the following.

Theorem 3.1.3. Fix a Banach space X, a closed subspace Y of X, and 1 < p 6∞.

(i) If np(Y ) and np(X/Y ) are �nite, then there exist constants C, λ such that for all
2 6 n ∈ N, np(X) 6 C(log n)λ.

(ii) If Y and X/Y have Pp, so does X.

The fact that Pp is a 3SP was shown in Theorem 7.5 of [29]. The proof there established
an inequality similar to Theorem 3.1.3(i), but using ap rather than np. In fact, the argu-
ment there was given for asymptotic Rademacher type p, which deals with Rademacher
averages of arbitrary linear combinations of the branches of weakly null trees, which added
signi�cant technicality to the proof. Because np deals only with �at linear combinations,
we sketch the simpler proof below.

We will use the following, which is an analogue of a lemma of En�o, Lindenstrauss,
and Pisier in their solution of the Palais problem [38].
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Lemma 3.1.4. For any Banach space X, any closed subspace Y of X, and any m,n ∈ N,

θmn(X) 6 6
(
θm(X/Y )θn(X) + θm(X)θn(Y )

)
(we recall that θn(X) was de�ned before Remark 1.2.3).

Let us �rst deduce Theorem 3.1.3 from Lemma 3.1.4.

Proof of Theorem 3.1.3. (i) By Lemma 3.1.4, for any n ∈ N,

np,n2(X) =
θn2(X)

n2/p
6 6
(θn(X/Y )

n1/p
+
θn(Y )

n1/p

)θn(X)

n1/p

6 cnp,n(X),

where c = 6(np(X/Y ) +np(Y )). We argue as in Theorem 3 of [38] to deduce the existence
of the constants C and λ.

(ii) Assume Y,X/Y have Pp. Fix 1 < r < s < p. Since Y,X/Y have Pp, they also have
Ns, which means there exist constants C, λ such that for all 2 6 n, θn(X) = ns,n(X)n1/s 6
C(log n)λn1/s. Then nr,n(X) = θn(X)n−1/r 6 C(log n)λn1/s−1/r, which vanishes as n tends
to in�nity. Therefore, for 1 < r < p, nr(X) < ∞, so X ∈ Pp =

⋂
1<r<p Nr (by Theorem

1.2.13).

We next recall an easy technical piece which we will need for the proof of Lemma
3.1.4.

Claim 1. Let X be a Banach space and Y a closed subspace. For any weak neighborhood
U1 of 0 in X and R, δ > 0, there exists a weak neighborhood U2 of 0 in X such that if
x ∈ U2 ∩RBX with ‖x‖X/Y < δ, then there exists y ∈ U1 ∩RBY such that ‖x− y‖ < 6δ.

Proof. If it were not so, then for some weak neighborhood U1 of 0 in X and some R, δ > 0,
there would exist a weakly null net (xλ) ⊂ RBX such that, for all λ, ‖xλ‖X/Y < δ
and for all y ∈ U1 ∩ RBY , ‖xλ − y‖ > 6δ. For each λ, we can �x yλ ∈ Y such that
‖xλ − yλ‖ < δ. By passing to a subnet and relabeling, we can assume (yλ) is weak∗-
convergent to some y∗∗ ∈ BX∗∗ . Fix ε > 0 and a �nite subset F of X∗ such that
V := {x ∈ X : (∀x∗ ∈ F )(|x∗(x)| < 2ε)} ⊂ U1. Since (xλ) is weakly null and (yλ) is
weak∗-convergent to y∗∗, we can �nd λ1, a �nite subset G of the index set of (xλ), and
positive numbers (wλ)λ∈G summing to 1 such that

(i) for all x∗ ∈ F and λ ∈ {λ1} ∪G, |y∗∗(x∗)− x∗(yλ)| < ε,

(ii) ‖
∑

λ∈Gwλxλ‖ < δ.

Let y1 = yλ1 −
∑

λ∈Gwλyλ ∈ V and note that

‖y1 − xλ1‖ 6 ‖yλ1 − xλ1‖+
∑
λ∈G

wλ‖yλ − xλ‖+ ‖
∑
λ∈G

wλxλ‖ < 3δ.

Since ‖xλ1‖ 6 R, ‖y1‖ 6 R + 3δ. If ‖y1‖ 6 R, let y = y1, and otherwise let y = R
‖y1‖y1,

noting that ‖y− xλ1‖ 6 ‖y− y1‖+ ‖y1− xλ1‖ < 6δ. By convexity of V , y ∈ V ⊂ U1, and
we reach a contradiction.



3.1. THREE-SPACE PROPERTIES 55

Let us now sketch the proof of Lemma 3.1.4.

Sketch. If Y is �nite dimensional, then θn(Y ) = 0 and θn(X/Y ) = θn(X) for all n ∈ N.
Then the inequality follows, without the factor of 6, using submultiplicativity of θn(X).
A similar conclusion holds if X/Y is �nite dimensional. We can therefore assume Y,X/Y
are in�nite dimensional, and θn(Y ), θn(X/Y ) ≥ 1 for all n ∈ N.

The idea is to consider a weakly null tree indexed by Dmn that consists of inner trees
of height m, and outer trees of height n (we do not de�ne outer and inner trees but we
hope the image will be clear to the reader after reading the construction below). For
ψ > θm(X/Y ), ψ1 > θm(X), φ > θn(Y ), and φ1 > θn(X), we can �x winning strategies
χ, χ1, $, and $1 for Player I in each of the games Θ(ψ,m) on X/Y , Θ(ψ1,m) on X,
Θ(φ, n) on Y , and Θ(φ1, n) on X, respectively. For a weakly null collection (xt)t∈D6mn ⊂
BX , we claim that we can recursively select t1 ∈ Dm, y1 ∈ Y , t2 ∈ D2m such that t1 ≺ t2,
y2 ∈ Y , . . ., tn ∈ Dnm such that tn−1 ≺ tn, yn ∈ Y so that, for all 1 6 i 6 n,

(i) ‖yi −
∑im

j=(i−1)m+1 xt|i‖ 6 6ψ,

(ii) ‖
∑im

j=(i−1)m+1 xt|i‖ 6 ψ1,

(iii) ‖
∑n

i=1
yi

6ψ1
‖ 6 φ,

(iv) ‖
∑n

i=1

yi−
∑im

j=(i−1)m+1 xt|j
6ψ

‖ 6 φ1.

Then ∥∥∥ mn∑
i=1

xt|i

∥∥∥ 6
∥∥∥ n∑
i=1

[
yi −

im∑
j=(i−1)m+1

xt|j
]∥∥∥+

∥∥∥ n∑
i=1

yi

∥∥∥
6 6ψφ1 + 6ψ1φ.

Since ψ > θm(X/Y ), ψ1 > θm(X), φ > θn(Y ), and φ1 > θn(X) were arbitrary, this will
yield the inequality.

We now explain how to choose ti and yi. Assume that for some k < n, we have
already chosen t1 ≺ . . . ≺ tk, ti ∈ Dim, and y1, . . . , yk. Assume also that (yi/6ψ1)ki=1 and
((yi −

∑im
j=(i−1)m+1 xtk|j)/6ψ)ki=1 have been chosen by Player II against Player I, who is

using strategies $ and $1, respectively. Let U,U1 be the weak neighborhoods chosen for
the next stage of the game by strategies $ and $1, respectively. By remark 1.2.3, we can
assume that all the weak neighborhoods are convex.

By Claim 1, there exists a weak neighborhood W of 0 in X, which we can also assume
is convex, such that if x ∈ W ∩ ψ1BX satis�es ‖x‖X/Y 6 ψ, then there exists y ∈
U ∩ 1

2
U1 ∩ ψ1BY such that ‖y − x‖ 6 6ψ. Let Q : X → X/Y denote the quotient map

and, using the strategies χ and χ1, choose tk ≺ s1 ≺ . . . ≺ sm = tk+1 ∈ D(k+1)m such that
for each 1 6 j 6 m,

xsj ∈ Gj ∩Q−1(Hj) ∩
1

m
W ∩ 1

2m
U1.

Here, the setsHj are determined by χ playing against Player II, chosing xs1+X/Y, . . . , xsm+
X/Y and the sets Gj are determined by χ1 playing against Player II's, chosing xs1 , . . .,
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xsm . Note that Gj ∩Q−1(Hj) is a weak neighborhood of 0 in X. Playing according to χ
and χ1 guarantees that

∥∥∥ (k+1)m∑
j=km+1

xtk+1|j

∥∥∥ =
∥∥∥ m∑
j=1

xsj

∥∥∥ 6 ψ1

and ∥∥∥ (k+1)m∑
j=km+1

xtk+1|j

∥∥∥
X/Y

=
∥∥∥ m∑
j=1

xsj

∥∥∥
X/Y

6 ψ.

Since
∑m

j=1 xsj ∈
1
m
W + . . .+ 1

m
W = W , there exists yk+1 ∈ U ∩ 1

2
U1 ∩ ψ1BY such that

∥∥∥yk+1 −
m∑
j=1

xs|j

∥∥∥ 6 6ψ.

Note also that yk+1 −
∑m

j=1 xsj ∈
1
2
U1 + 1

2m
U1 + . . .+ 1

2m
U1 = U1. Therefore

yk+1

ψ1

∈ U ∩BY and
yk+1 −

∑(k+1)m
j=km+1 xtk+1|j

6ψ
∈ U1 ∩BX

obey the rules coming from the winning strategies $ and $1, respectively. This completes
the recursive choices. Items (i) and (ii) are seen to be satis�ed from the construction, while
items (iii) and (iv) follow from the fact that the outer sequences were chosen according
to $ and $1.

3.1.3 A counterexample

For p ∈ (1,∞), contrary to Pp, none of the properties Tp, Ap, Np is a three-space property.
Before proving this result by giving a counterexample, let us introduce the following
de�nition.

De�nition 3.1.5. Let X be a Banach space and p ∈ (1,∞). We say that X has the weak
p-Banach-Saks property if there exists a positive constant C such that for every weakly
null sequence (xn) in BX and every k ∈ N, we can �nd a subsequence (xnj

)j of (xn) such
that ∥∥∥ k∑

j=1

xnj

∥∥∥ ≤ Ck1/p

for all n1 < · · · < nk.

Let us notice that every Banach space with property Np, 1 < p < ∞, has the weak
p-Banach-Saks property. For instance, use item (iii) of Theorem 1.2.11 and mimic the
argument of (iii)⇒ (ii) in the proof of that statement.

Proposition 3.1.6. Let p ∈ (1,∞). Then the properties Tp, Ap, and Np are not three
space properties.
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Proof. Let us consider the Kalton-Peck re�exive spaces Zp (see [66] or [24]), that satis�es
the following: Zp may be normed in such a way that it has a closed subspace M isometric
to `p with Zp/M also isometric to `p. It is known that Zp does not have the weak p-
Banach-Saks property (see [24]). Hence, since `p has property Tp, we get the result by
combining the previous remark and item (ii) of Theorem 1.2.13.

In fact, we can even prove that Zp does not have any of the concentration properties
indexed by p considered in [40] and therefore deduce the following.

Proposition 3.1.7. Let p ∈ (1,∞). Then the properties HFCp, HICp, HCp, HFCp,d, and
HCp,d introduced in Chapter 2 are not three spaces properties.

Proof of Proposition 3.1.7. We use the notation from Theorem 6.1 [66]. For k ∈ N, the

map g :

{
[N]k → Zp
n 7→

∑k
j=1 unj

is 2-Lipschitz and satis�es

‖g(n)− g(m)‖ = 21/p

(
ln(2k)

p
+ 1

)
k1/p

for all integers n1 < m1 < n2 < · · · < nk < mk. Therefore, Zp does not have any of the
properties mentioned above. The result follows from the fact that `p has them all, which
is due to Kalton and Randrianarivony [67].

Remark 3.1.8. Let p ∈ (1,∞). One can note the following more general result: if (P ) is a
property of Banach spaces satis�ed by `p that implies the weak-p-Banach-Saks property,
then (P ) is not a three-space property. In particular, being asymptotic-`p or having
asymptotic models dominated by `p are not three-space properties.

3.1.4 Asymptotic uniform �attenability

In the case p =∞, the situation is di�erent. First, we easily have the following.

Theorem 3.1.9. The property T∞ is a three-space property.

Proof. Let us �rst recall that a separable Banach space is T∞ if and only if it is isomorphic
to a subspace of c0 (see [45]). It was shown by Johnson and Zippin [61], who attributed
it to Lindenstrauss, that being isomorphic to a subspace of c0 is a three-space property.
So we deduce from Theorem 1.2.15, Proposition 3.1.1 and Lemma 3.1.2 that T∞ is a
three-space property.

By looking at the argument in [61], we can actually show slightly more.

Proposition 3.1.10. Let p ∈ (1,∞] and B be any one of the properties Tp, Ap and Np.
Let X be a Banach space with a closed subspace Y such that Y has T∞ and X/Y has B.
Then X has B.

Proof. By Theorem 1.2.15, we may assume that X is separable. Let T : Y → c0 be a
linear embedding. It follows from Sobczyk's theorem that c0 has the separable extension
property. Therefore T extends to a bounded linear map S : X → c0. De�ne now
U : X → c0 ⊕ X/Y by Ux = (Sx,Qx) where Q : X → X/Y is the quotient map. It is
then easy to check that U is a linear embedding from X into c0 ⊕X/Y . Finally, since B
passes clearly to direct sums, we deduce that c0 ⊕X/Y and therefore X have B.
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3.1.5 Summable Szlenk index

This subsection contains the proof of our main result on three-space properties. We will
show that A∞ is a three-space property.

Recall that a Banach space is said to have property A∞ provided there exists a constant
c > 0 such that for each n ∈ N, Player I has a winning strategy in the N(c,∞, n) game
(since A∞ = N∞ according to Theorem 1.2.13): Player I chooses a weak neighborhood U1

of 0 in X and Player II chooses x1 ∈ U1 ∩BX . Player I chooses a weak neighborhood U2

of 0 in X and Player II chooses x2 ∈ U2 ∩BX . Play continues in this way until x1, . . . , xn
have been chosen. Player I wins if ‖

∑n
i=1 xi‖ 6 c and Player II wins otherwise.

As we are going to use a separable reduction, we will be able to use trees indexed by
N. For that purpose we let Tn = N≤n.

It will be convenient for us to introduce the notions of U-weakly (or weak∗) null se-
quences or collections indexed by Tn in a Banach space, where U is a given free ultra�lter
on N. Let us assume, more generally, that U is a �lter on N. Given a Banach space X,
we say that a sequence (xi)

∞
i=1 ⊂ X is U -weakly null if it converges to 0 over U in the

weak topology. The notion of U -weak ∗-null for a sequence (x∗i )
∞
i=1 ⊂ X∗ is de�ned simi-

larly. A collection (xt)t∈Tn ⊂ X is U -weakly null provided that for each t ∈ {∅} ∪ Tn−1,
(xta(m))

∞
m=1 is U -weakly null. We say (x∗t )t∈Tn ⊂ X∗ is U -weak ∗-null provided that for

each t ∈ {∅} ∪ Tn−1, (x∗ta(m))
∞
m=1 is U -weak∗-null. Note that for each Banach space X

and each n ∈ N, BX admits a U -weakly null collection and BX∗ admits a U -weak∗-null
collection, namely the collections consisting entirely of zeros.

In the remainder of this section, we shall always assume that U is a free ultra�lter on
N.

Proposition 3.1.11. Let Z be a Banach space such that Z∗ is separable, and (z∗m)∞m=1 ⊂ Z
a U-weak∗-null sequence in Z∗. For any δ > 0, there exists a U-weakly null sequence
(zm)∞m=1 ⊂ BZ such that

lim
m∈U

Re z∗m(zm) > lim
m∈U

‖z∗m‖
2
− δ.

Proof. If lim
m∈U
‖z∗m‖ = 0, simply take zm = 0 for allm ∈ N. Suppose that r := lim

m∈U
‖z∗m‖ > 0.

For each m ∈ N, �x xm ∈ BX such that Re z∗m(xm) > ‖z∗m‖ − δ. Let x∗∗ = weak∗- lim
m∈U

xm,

where the limit is taken in BX∗∗ . Since X∗ is separable, the weak∗-topology on BX∗∗ is
metrizable, which means some subsequence (um)∞m=1 of (xm)∞m=1 is weak∗-convergent to
x∗∗. De�ne u0 = 0. For eachm ∈ N, let Cm = {i ∈ N0 : |z∗m(ui)| 6 δ}, where N0 = {0}∪N.
Note that 0 ∈ Cm for all m ∈ N. De�ne f : N → N0 by letting f(m) = maxCm if
maxCm < m, and let f(m) ∈ Cm ∩ [m,∞) be arbitrary if maxCm > m. Note that
lim
m∈U

f(m) = l ∈ N0 ∪ {∞}, where N0 ∪ {∞} is the one-point compacti�cation of N0. We

claim that l =∞. Indeed, if l <∞, then

f−1({l}) ∩ {m ∈ N : |z∗m(ul+1)| < δ} ∈ U ,

and therefore there exists some l < m0 ∈ f−1({l}) ∩ {m ∈ N : z∗m(ul+1)}. But this means
that l + 1 ∈ Cm0 and l = maxCm0 , this is a contradiction.

De�ne now zm = 1
2
(xm − uf(m)) ∈ BX . Since lim

m∈U
f(m) =∞ and weak∗-limm→∞ um =

x∗∗, weak∗- lim
m∈U

uf(m) = x∗∗. Therefore weak- lim
m∈U

zm = 0. By our choice of f(m), |z∗m(uf(m))| 6
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δ for all m ∈ N, and

lim
m∈U

Re z∗m(zm) > lim
m∈U

Re
1

2
z∗m(xm)− lim

m∈U

1

2
|z∗m(uf(m))| >

r

2
− δ.

We de�ne αUn (X) to be the in�mum of a > 0 such that for any U -weakly null (xt)t∈Tn ⊂
BX ,

lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x(m1,...,mi)

∥∥∥ 6 a.

We de�ne βUn (X) to be the in�mum of b > 0 such that for any U -weak∗-null (x∗t )t∈Tn ⊂
BX∗ ,

b lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥ >
n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖.

The next proposition details a characterization and a dual formulation of A∞ for spaces
with separable dual.

Proposition 3.1.12. Let X be a Banach space such that X∗ is separable.

(i) X has A∞ if and only if supn α
U
n (X) <∞.

(ii) For each n ∈ N, αUn (X) 6 2βUn (X).

(iii) For each n ∈ N, βUn (X) 6 2αUn (X).

Proof. (i) Since X∗ is separable, there exists a metric d on BX that is compatible with
the weak topology. For each n ∈ N, let Un = {x ∈ X : d(x, 0) < 1/n}.

First assume that X does not have property A∞. Then for each a > 0, there ex-
ists n ∈ N such that Player I fails to have a winning strategy in the A(a, n) game.
Since the A(a, n) game is determined, Player II must have a winning strategy in the
A(a, n) game. We will choose (xt)t∈Tn according to this winning strategy. First, let
x(m) ∈ Um ∩ BX be Player II's response if Player I opens the game with Um. For
1 < k 6 n and t = (m1, . . . ,mk), let xt ∈ Umk

∩ BX be Player II's response if Play-
ers I and II have chosen Um1 , x(m1), . . . , x(m1,...,mk−1), Umk

. For each t = (mi)
n
i=1 ∈ Tn, since

Um1 , x(m1), Um2 , x(m1,m2), . . . , Umn , x(m1,...,mn) were chosen according to Player II's winning

strategy,
∥∥∥∑n

i=1 x(m1,...,mi)

∥∥∥ > a. Therefore

lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x(m1,...,mi)

∥∥∥ > a.

Since xta(m) ∈ Um for each t ∈ {∅}∪Tn−1 andm ∈ N, it follows that (xta(m))
∞
m=1 is weakly

null, and is therefore a U -weakly null sequence, for each t ∈ {∅} ∪ Tn−1. Therefore this
collection (xt)t∈Tn ⊂ BX witnesses the fact that αUn (X) > a. Since a > 0 was arbitrary,
supn α

U
n (X) =∞. By contraposition, if supn α

U
n (X) <∞, X has property A∞.
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Next, suppose that X has property A∞. Fix a0 > 0 such that for all n ∈ N, Player I
has a winning strategy in the A(a0, n) game. Suppose that for some n ∈ N, αUn (X) > a0.
Fix αUn (X) > a > a0. There exists (xt)t∈Tn ⊂ BX which is U -weakly null and such that

lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x(m1,...,mi)

∥∥∥ > a.

Let V1 be Player I's �rst choice according to a winning strategy in the A(a0, n) game.
This means we can choose

m1 ∈ {m ∈ N : x(m) ∈ V1} ∩ {m ∈ N : ‖x(m)‖ > a} ∈ U , if n = 1

and

m1 ∈ {m ∈ N : x(m) ∈ V1}

∩
{
m ∈ N : lim

m2∈U
. . . lim

mn∈U

∥∥∥x(m) +
n∑
i=2

x(m,m2,...,mi)

∥∥∥ > a
}
∈ U , if n > 1

Let Player II's choice in the A(a0, n) game be x(m1). Next, assume that for some 1 6 k < n,
V1, . . . , Vk and m1, . . . ,mk have been chosen such that

(a) V1, x(m1), . . . , Vk, x(m1,...,mk) have been chosen in the A(a0, n) game with Player I
playing according to a winning strategy,

(b) we have the inequality

lim
mk+1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x(m1,...,mi)

∥∥∥ > a,

We now describe the recursive step of the construction.
Assume �rst that k + 1 < n. Let Vk+1 be Player I's next choice according to the winning
strategy, let Player II's choice be x(m1,...,mk+1), where

mk+1 ∈ {m ∈ N : x(m1,...,mk,m) ∈ Vk+1}∩{
m ∈ N : lim

mk+2∈U
. . . lim

mn∈U

∥∥∥x(m1,...,mk,m) +
∑

i 6=k+1;1≤i≤n

x(m1,...,mi)

∥∥∥ > a
}
∈ U

Assume, for the last step, that k + 1 = n. Let Vk+1 = Vn be Player I's next choice
according to the winning strategy, let Player II's choice be x(m1,...,mn), where

mk+1 = mn ∈ {m ∈ N : x(m1,...,mk,m) ∈ Vn}∩{
m ∈ N :

∥∥∥x(m1,...,mk,m) +
k∑
i=1

x(m1,...,mi)

∥∥∥ > a
}
∈ U

This completes the recursive construction, from which we it follows that ‖
∑n

i=1 x(m1,...,mi)‖ >
a. However, since V1, x(m1), . . . , Vn, x(m1,...,mn) were chosen with Player I playing accord-
ing to a winning strategy in the A(a0, n) game, ‖

∑n
i=1 x(m1,...,mi)‖ 6 a0. Since a0 < a,
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this is a contradiction. Hence supn α
U
n (X) 6 a0 < ∞. Therefore if X has property A∞,

supn α
U
n (X) <∞.

(ii) Fix a < αUn (X). Then there exists a U -weakly null collection (xt)t∈Tn ⊂ BX such
that

a < lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x(m1,...,mi)

∥∥∥.
For each t = (m1, . . . ,mn) ∈ Nn, choose y∗t ∈ 1

2
BX∗ such that

Re y∗t
( n∑
i=1

x(m1,...,mi)

)
=

1

2

∥∥∥ n∑
i=1

x(m1,...,mi)

∥∥∥.
Then

a

2
< lim

m1∈U
. . . lim

mn∈U
Re y∗(m1,...,mn)

( n∑
i=1

x(m1,...,mi)

)
.

For t ∈ Nn, set z∗t = y∗t and for each t ∈ {∅} ∪ Tn−1, de�ne

z∗t = lim
m|t|+1∈U

. . . lim
mn∈U

y∗ta(m|t|+1,...,mn),

where all limits are taken with respect to the weak∗-topology. For (m1, . . . ,mk) ∈ Tn,
de�ne x∗(m1,...,mk) = z∗(m1,...,mk) − z∗(m1,...,mk−1) ∈ BX∗ . Note that (x∗t )t∈Tn ⊂ BX∗ is U -weak∗-
null, which implies that

n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖ 6 βUn (X) lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥ (∗)

= βUn (X) lim
m1∈U

. . . lim
mn∈U

‖z∗(m1,...,mn) − z∗∅‖

6 βUn (X).

Note that because (xt)t∈Tn is U -weakly null and (x∗t )t∈Tn is U -weak∗-null, it holds that for
distinct i, j ∈ {1, . . . , n},

lim
m1∈U

. . . lim
mn∈U

x∗(m1,...,mi)
(x(m1,...,mj)) = 0.

Similarly, for each 1 6 i 6 n, lim
m1∈U

. . . lim
mn∈U

z∗∅(x(m1,...,mi)) = 0.
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Combining the facts above, we can write

a

2
< lim

m1∈U
. . . lim

mn∈U
Re z∗(m1,...,mn)

( n∑
i=1

x(m1,...,mi)

)
= lim

m1∈U
. . . lim

mn∈U
Re (z∗(m1,...,mn) − z∗∅)

( n∑
i=1

x(m1,...,mi)

)
= lim

m1∈U
. . . lim

mn∈U
Re
( n∑
i=1

x∗(m1,...,mi)

)( n∑
i=1

x(m1,...,mi)

)
=

n∑
i=1

lim
m1∈U

. . . lim
mn∈U

Re x∗(m1,...,mi)
(x(m1,...,mi))

=
n∑
i=1

lim
m1∈U

. . . lim
mi∈U

Re x∗(m1,...,mi)
(x(m1,...,mi))

6
n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖ 6 βUn (X).

Since a < αUn (X) was arbitrary, we are done.

(iii) Fix b < βUn (X) and δ > 0. Then there exists a collection (x∗t )t∈Tn ⊂ BX∗ which is
U -weak∗-null and

b lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥ < n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖.

Note that this inequality and (∗) imply that

lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥ > 0.

We de�ne a collection (xt)t∈Tn ⊂ BX which is U -weakly null and such that for each
1 6 i 6 n,

lim
m1∈U

. . . lim
mi∈U

Re x∗(m1,...,mi)
(x(m1,...,mi)) >

1

2
lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖ − δ.

To that end, for each t ∈ {∅} ∪ Tn−1, choose, as it is allowed by Proposition 3.1.11,
(xta(m))

∞
m=1 ⊂ BX to be a U -weakly null sequence such that

lim
m∈U

Re x∗ta(m)(xta(m)) >
1

2
lim
m∈U
‖x∗ta(m)‖ − δ.

Note that, since (xt)t∈Tn is U -weakly null and (x∗t )t∈Tn is U -weak∗-null, we have again that
for all 1 ≤ i 6= j ≤ n

lim
m1∈U

. . . lim
mn∈U

x∗(m1,...,mi)
(x(m1,...,mj)) = 0.
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Then, we can write

b

2
lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥− δn
<

1

2

n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖ − δn

6
n∑
i=1

lim
m1∈U

. . . lim
mi∈U

Re x∗(m1,...,mi)
(x(m1,...,mi))

= lim
m1∈U

. . . lim
mn∈U

Re
( n∑
i=1

x∗(m1,...,mi)

)( n∑
i=1

x(m1,...,mi)

)
6 lim

m1∈U
. . . lim

mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥∥∥∥ n∑
i=1

x(m1,...,mi)

∥∥∥
6 αUn (X) lim

m1∈U
. . . lim

mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥.
Since lim

m1∈U
. . . lim

mn∈U

∥∥∥∑n
i=1 x

∗
(m1,...,mi)

∥∥∥ > 0, and since δ > 0 and b < βUn (X) were arbitrary,

we are done.

Remark 3.1.13. In item (i) of the preceding proof, we actually showed that if X∗ is
separable, then for each n ∈ N, αUn (X) is the in�mum of a > 0 such that Player I has a
winning strategy in the A(a, n) game.

We can now turn to the heart of the proof.

Lemma 3.1.14. For any Banach space X with X∗ separable and any subspace Y of X,

αUn (X) 6 40 max{αUn (Y ), αUn (X/Y )}2.

Proof. If X is �nite-dimensional, then αUn (X) = αUn (Y ) = αn(X/Y ) = 0, so assume X is
in�nite-dimensional. In this case, at least one of Y ,X/Y must also be in�nite-dimensional,
which means

b := max{βUn (Y ), βUn (X/Y )} > 1.

Fix (x∗t )t∈Tn ⊂ BX∗ U -weak∗-null. We will de�ne a bounded, U -weak∗-null collection
(y∗t )t∈Tn ⊂ Y ⊥ such that for each 1 6 i 6 n,

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

− y∗(m1,...,mi)
‖ 6 2 lim

m1∈U
. . . lim

mi∈U
‖x∗(m1,...,mi)

‖X∗/Y ⊥ .

To that end, for each t = (m1, . . . ,mi) ∈ Tn, �x w∗t ∈ Y ⊥ such that

‖x∗t − w∗t ‖ < ‖x∗t‖X∗/Y ⊥ + 2−mi

and note that w∗t ∈ 3BY ⊥ . For t ∈ {∅} ∪ Tn−1, let v∗t = weak∗- lim
m∈U

w∗ta(m) ∈ 3BY ⊥ and let

y∗ta(m) = w∗ta(m) − v∗t . It is clear that (y∗t )t∈Tn ⊂ Y ⊥ is bounded and U -weak∗-null. Note
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that for any t ∈ {∅} ∪ Tn−1, weak∗- lim
m∈U

(w∗ta(m) − x∗ta(m)) = v∗t − 0 = v∗t . By weak∗-lower

semicontinuity of the norm, it follows that

‖v∗t ‖ 6 lim
m∈U
‖w∗ta(m) − x∗ta(m)‖ = lim

m∈U
‖x∗ta(m)‖X∗/Y ⊥ .

Therefore

lim
m∈U
‖x∗ta(m) − y∗ta(m)‖ 6 lim

m∈U
‖x∗ta(m) − w∗ta(m)‖+ ‖v∗t ‖ 6 2 lim

m∈U
‖x∗ta(m)‖X∗/Y ⊥ .

From this it follows that

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

− y∗(m1,...,mi)
‖ 6 2 lim

m1∈U
. . . lim

mi∈U
‖x∗(m1,...,mi)

‖X∗/Y ⊥ .

Since (y∗t )t∈Tn ⊂ Y ⊥ = (X/Y )∗ is U -weak∗-null and bounded, by homogeneity, we have
that

b lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

y∗(m1,...,mi)

∥∥∥ >
n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖y∗(m1,...,mi)

‖.

Let us prove that

b lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥ >
1

1 + 4b

n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖.

We start with the easy case and suppose �rst that

n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖X∗/Y ⊥ >
1

1 + 4b

n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖.

Since (x∗t |Y )t∈Tn ⊂ BY ∗ = BX∗/Y ⊥ is U -weak∗-null,

b lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥ > b lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥
X∗/Y ⊥

>
n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖X∗/Y ⊥

>
1

1 + 4b

n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖.

Next suppose that

n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖X∗/Y ⊥ <
1

1 + 4b

n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖.
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Then since b > 1,

b lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥ > b lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

y∗(m1,...,mi)

∥∥∥
− b

n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

− y∗(m1,...,mi)
‖

>
n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖y∗(m1,...,mi)

‖ − 2b
n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖X∗/Y ⊥

>
n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖ −
n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

− y∗(m1,...,mi)
‖

− 2b
n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖X∗/Y ⊥

>
n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖ − 4b
n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖X∗/Y ⊥

>
n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖ − 4b

1 + 4b

n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖

=
1

1 + 4b

n∑
i=1

lim
m1∈U

. . . lim
mi∈U
‖x∗(m1,...,mi)

‖.

Combining the two previous paragraphs we get

βUn (X) 6 b(1 + 4b) 6 5b2 = 5 max{βUn (Y ), βUn (X/Y )}2.

Combining this inequality with items (ii) and (iii) of Proposition 3.1.12 yields

αUn (X) 6 40 max{αUn (Y ), αUn (X/Y )}2.

We can now state and prove our result.

Theorem 3.1.15. The property A∞ is a three-space property.

Proof. Assume �rst that Y is a closed subspace of a Banach space X such that Y and
X/Y are in A∞ ∩Sep. Then Y and X/Y are separable Asplund spaces and Y ∗ = X∗/Y ⊥

and (X/Y )∗ = Y ⊥ are separable. So X∗ is separable and we can apply Lemma 3.1.14 and
item (i) of Proposition 3.1.12 to deduce that X has A∞. We have shown that membership
in A∞ ∩ Sep is a 3SP. It then follows from Theorem 1.2.15 and Lemma 3.1.2 that A∞ is a
3SP.

Remark 3.1.16. Since re�exivity is also a three-space property (cf [69]), we can deduce
that property HFC∞ de�ned in Chapter 2, which is equivalent to being re�exive and
asymptotic-c0, is a three-space property. However, the question of whether or not property
HC∞ is a three-space property remains open.
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3.2 Non-linear stabilities and examples

As one of the main applications of Chapter 1, we will exhibit two new properties related
to the asymptotic smoothness of Banach spaces, that are stable under coarse Lipschitz
equivalences

3.2.1 Results of non-linear stability

The following results were obtained by Godefroy, Kalton, and Lancien in [45] and [46].

Theorem 3.2.1. Let p ∈ (1,∞].

1. The class Tp is stable under Lipschitz equivalences.

2. The class Pp is stable under coarse Lipschitz equivalences.

3. The class A∞ = N∞ is stable under coarse Lipschitz equivalences.

In fact, statements (2) and (3) are only proved for uniform homeomorphisms in [46]
in the separable case. The adaptation for coarse Lipschitz equivalences relies on charac-
terization (iii) in Proposition 1.1.4, which allows to apply the so-called Gorelik principle
(see also [32] for details). Then the non-separable case can easily be deduced by a stan-
dard separable saturation argument combined with the separable determination of these
properties. It is then natural to wonder about the non-linear stability of the classes Ap
and Np for 1 < p < ∞. The results we have detailed in Section 1.2.2 together with a
careful examination of the statements in [46] or [32] will allow us to easily obtain strong
new stability results. We start with the following.

Theorem 3.2.2. For any p ∈ (1,∞), the class Ap is stable under coarse Lipschitz equiv-
alences.

Proof. Let X ∈ Ap and Y a Banach space such that there exists a coarse Lipschitz
equivalence f from X to Y . Then, Corollary 6.7 in [32], which is an extension of results
in [46], insures the existence of a universal constant K > 0 and a constant M > 0
(depending on f) so that for any ε > 0, there exists a norm | | on Y satisfying

∀y ∈ Y, ‖y‖Y ≤ |y| ≤M‖y‖Y and ∀σ ∈ [0, 1], ρ| |(KM
2σ) ≤ ρX(σ) + ε.

With this result at hand, it is clear that characterization (iii) of Ap in Theorem 1.2.10 is
stable under coarse Lipschitz equivalences.

We also have.

Theorem 3.2.3. For any p ∈ (1,∞), the class Np is stable under coarse-Lipschitz equiv-
alences.

Proof. Similarly to the previous proof, this is a direct consequence of Corollary 6.7 in [32]
and characterization (iii) of Np in Theorem 1.2.11.

Obviously the above argument can also be applied to prove that A∞ is stable under
coarse Lipschitz equivalences, which, as we explained, was already known.
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Problem 3.2.4. In [64], N. Kalton proved that for 1 < p < ∞, the class Tp is not
stable under uniform homeomorphisms. It is not known however whether the class T∞ is
stable under coarse Lipschitz isomorphisms (or even uniform homeomorphisms). In fact,
a positive answer would imply that a Banach space coarse Lipschitz equivalent to c0 is
linearly isomorphic to c0, which is an important open question. Indeed, it is known that
the class of all L∞ spaces is stable under coarse Lipschitz equivalences [52] and that a L∞
subspace of c0 is isomorphic to c0 [60].

3.2.2 Examples

To conclude this chapter, we gather a few known examples of T∞ or A∞ spaces and related
problems.

Examples: non-separable uniformly �attenable spaces

The �rst obvious examples of non-separable T∞ (or equivalently, AUF-renormable) spaces
are given by c0(Γ) spaces, with Γ uncountable.

Proposition 3.2.5. For any set Γ, the space c0(Γ) equipped with its natural norm is
AUF.

Proof. It follows immediately from the de�nition of the norm of c0(Γ) that

∀t ∈ (0, 1) ρc0(Γ)(t) = 0.

The next result was already known (see the remark after the proof). We present �rst
a proof using that T∞ is a 3SP.

Theorem 3.2.6. Let K be a compact scattered space such that its Cantor derived set of
order ω, K(ω) is empty. Then C(K) is T∞.

Proof. We shall prove it by induction on n ∈ N such that K(n) = ∅. If n = 1, then K ′ = ∅
and K is �nite. Therefore C(K) is �nite-dimensional and thus is T∞. Assume that the
statement is true for n ∈ N and that K(n+1) = ∅. The subspace of C(K) de�ned by
Y = {f ∈ C(K), f|K′ = 0} is clearly isometric to c0(K \ K ′) and by Proposition 3.2.5
is T∞. Let now Q be the restriction mapping from C(K) to C(K ′). It follows from the
Tietze extension theorem that Q is onto. Since Y is the kernel of Q, we have that C(K ′)
is isomorphic to C(K)/Y . By induction hypothesis, C(K ′) and thus C(K)/Y are T∞. It
now follows from Theorem 3.1.9 that C(K) is T∞.

Remark 3.2.7. As we already mentioned, this is not a new result. Let us indicate a few
other ways to prove it.

1. Let K be a compact space such that K(n) = ∅, n ∈ N. The dual of C(K) is isometric
to `1(K). De�ne the following equivalent norm on `1(K):

∀µ ∈ `1(K), |µ| =
∑
x∈K

αx|µ(x)|,
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where αx = 2−i with 0 ≤ i ≤ n− 1 such that x ∈ K(i) \K(i+1). This formula comes
from [70], where it is proved that this norm is 1-AUC∗ and is the dual norm of an
equivalent norm on C(K). So its predual norm is AUF.

2. Let X be a separable subspace of C(K) and denote Y the closed sub-∗-algebra of
C(K) generated by X. Then Y is isometric to a space C(L), where L is a compact
metrizable space such that L(ω) = ∅. It follows from [15] that Y is either �nite
dimensional or isomorphic to c0(N). So X is T∞ and we can apply the separable
determination of T∞ (Theorem 1.2.15) to deduce that C(K) is T∞.

3. We conclude with the most sophisticated argument. It is known that if K is a com-
pact space such that K(ω) = ∅, then C(K) is Lipschitz isomorphic to some c0(Γ)
(see [33]). On the other hand, being AUF renormable is stable under Lipschitz iso-
morphisms ([45] for the separable case and [32] for the general case, or use separable
determination and saturation).

It is also important to mention that Theorem 3.2.6 provides (only in the non-separable
setting) examples of T∞ spaces that are not isomorphic to a quotient or a subspace of a
c0(Γ) space. Indeed we have

Theorem 3.2.8. There exists a compact space K such that K(3) = ∅, but C(K) is not
isomorphic to a quotient of a subspace of a c0(Γ) space.

Let us indicate this now classical construction. There exists a scattered separable
uncountable compact space K so that K(3) = ∅. This space is often called the Mrówka-
Isbell space and its construction is due to Mrówka [80] and Isbell (credited in [44]). We
also refer to its description in [102] page 1757, where its construction is based on the
Johnson-Lindenstrauss space JL0 [58]. Since K is separable, C(K) admits a countable
family of separating functionals (the Dirac maps at the points of a dense countable subset
of K). But C(K) is not separable, as K is uncountable and scattered and therefore non
metrizable. It follows that C(K) is not weakly Lindelöf determined (WLD in short): see
Theorem 5.37 and Proposition 5.40 in [50], or see [100]. We conclude by recalling that
c0(Γ) is always WLD and that being WLD is stable by passing to subspaces or quotients
(see also [50] and references therein).

Problem 3.2.9. We do not know if there exists a T∞ space which is not isomorphic to
quotient of a subspace of a C(K) space with K(ω) = ∅.

An interesting A∞ space

We already explained that showing that T∞ is stable under coarse Lipschitz equivalences
would imply that a Banach space coarse Lipschitz equivalent to c0 is linearly isomorphic
to c0. At this point it is only known that a Banach space coarse Lipschitz equivalent to
c0 is A∞ and L∞. Another hope was to show that a separable Banach space which is A∞
and L∞ is necessarily T∞ (see conjecture after Theorem 5.6 in [46]). Let us mention here
that this question has been solved negatively by Argyros, Gasparis, and Motakis in [4],
who showed the existence of a separable Banach space X which is A∞ and L∞ but so
that every in�nite dimensional subspace of X contains an in�nite dimensional re�exive
subspace.



Chapter 4

Some asymptotic types

This is a joint work with Florent Baudier. The main goal of this chapter is to prove an
asymptotic version of the following result.

Theorem 4.0.1 (Pisier, [91] and [90]). The following assertions are equivalent:
(i) `1 is not �nitely representable in X;
(ii) `1 is not crudely �nitely representable in X;
(iii) X is B-convex;
(iv) X has infratype p for some p > 1;
(v) X has Rademacher type p for some p > 1;
(vi) X has stable type p for some p > 1;
(vii) X has stable type 1.

We chose to present the proof by following the papers by Pisier, [90] and [91]. For
sake of completeness, we include all the proofs, even though some of them are basically
the same as Pisier's.

We will �nish this chapter with another shorter proof of the fact that a p-uniformly
smooth Banach space has En�o type p, which is inspired by the proof of the concentration
inequality from [67].

4.1 An overview of the local results

All Banach spaces in these notes are assumed to be real and in�nite-dimensional unless
otherwise stated. We denote the closed unit ball of a Banach space X by BX , and its unit
sphere by SX . Given a Banach space X with norm ‖ · ‖X , we simply write ‖ · ‖ as long as
it is clear from the context on which space it is de�ned.

First introduced by Beck in 1962 (see [14]) to characterize the Banach spaces for which
a certain strong law of large numbers holds, B-convexity was de�ned as follows: a Banach
space X is B-convex if there exist n ∈ N and ε > 0 such that for every choice x1, . . . , xn
of elements in BX , at least one choice of signs gives∥∥∥ n∑

i=1

±xi
∥∥∥ ≤ n(1− ε).

69
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If such n ∈ N and ε > 0 exist, we say that X is (n, ε) convex.
Soon after, Giesy proved that this property is equivalent to not containing the `n1 's uni-
formly (we say that a normed linear space X contains the `n1 's uniformly if there ex-
ists a constant λ > 0 such that, for all n ∈ N, one can �nd x1, . . . , xn ∈ SX so that
λ−1‖a‖`n1 ≤ ‖

∑n
i=1 aixi‖ ≤ λ‖a‖`n1 for every a = (a1, . . . , an) ∈ Rn) and its stability under

linear isomorphism and under passing to quotients and duals ([43]). He also proved that
a B-convex space with an unconditional basis is re�exive, leaving open the question of
this implication for any B-convex space. This question was answered negatively by James
in 1973 ([57]).
Next, Pisier gave another proof in [91] of the characterization of B-convexity by not con-
taining the `n1 's uniformly or having Rademacher type p ∈ (1, 2], where a normed linear
space X is said to have Rademacher type p ∈ (0, 2] if one can �nd a constant C such that
for every �nite family (xi)

n
i=1 in X, we have

1

2n

∑
(εi)ni=1∈{±1}n

∥∥∥ n∑
i=1

εixi

∥∥∥ ≤ C
( n∑
i=1

‖xi‖p
)1/p

.

To do so, he developed the submultiplicativity method, that has been used many times
since then.
This method lead to results involving di�erent notions of types. Before summarizing some
of them in one statement, we recall two de�nitions.

First, we say that a normed linear space X has infratype p ∈ (0, 2] if one can �nd a
constant C such that for every �nite family (xi)

n
i=1 in X, we have

inf
(εi)ni=1∈{±1}n

∥∥∥ n∑
i=1

εixi

∥∥∥ ≤ C
( n∑
i=1

‖xi‖p
)1/p

.

Secondly, if p ∈ (0, 2] and if (ξn)n∈N is a sequence of i.i.d random variables on a probability
space (Ω,P) with characteristic function t ∈ R 7→ e−|t|

p
, we say that X has stable type p

if one can �nd a constant C such that for every �nite family (xi)
n
i=1 in X, we have

E
(∥∥∥ n∑

i=1

ξixi

∥∥∥ p
2
)2/p

≤ C
( n∑
i=1

‖xi‖p
)1/p

.

We can now state this important result about types proved by Pisier (obtained by
combining results from [91] and [90]).

Theorem 4.1.1. Let X be a normed space. The following assertions are equivalent:
(i) X does not contain the `n1 's uniformly;
(ii) X has infratype p for some p ∈ (1,∞);
(iii) X has Rademacher type p for some p ∈ (1, 2];
(iv) X has stable type 1 + ε for some ε ∈ (0, 1];
(v) X has stable type 1.

For more information about the di�erent notions of type and related results, we refer
the reader to [88] or [77].
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4.2 Preliminaries

4.2.1 Asymptotic B-convexity and asymptotic �nite representabil-

ity

Let us start this subsection by introducing asymptotic B-convexity.

De�nition 4.2.1. Let k ∈ N, ε > 0.
We say that a Banach space X is (k, ε) asymptotically convex if for every weakly null tree
(xn)n∈[N]≤k ⊂ BX , there exists n ∈ [N]k such that

inf
(εj)kj=1∈{±1}k

∥∥∥ k∑
j=1

εjx(n1,...,nj)

∥∥∥ ≤ k(1− ε).

We say that X is asymptotically B-convex if it is (k, ε) asymptotically convex for some
k ∈ N, ε > 0.

In the local theory, if a Banach space X is (2, ε) convex for some ε > 0, then X is
super-re�exive (see [56]). In the asymptotic theory though, being (2, ε) asymptotically
convex does not imply re�exivity because of the following result.

Proposition 4.2.2. If X is a separable AUS-able Banach space, then X can be renormed
in such a way that X is (2, ε) asymptotically convex for some ε > 0.

Proof. As said in the proof of Theorem 4.15 of [72], X can be renormed in such a way
that there exists p ∈ (1,∞) so that

lim sup ‖x+ xn‖p ≤ ‖x‖p + lim sup ‖xn‖p

whenevery x ∈ X and (xn)n∈N is a weakly null sequence in X (the reader can �nd a proof
of this result in [84]).
Thus it immediately follows that X is (2, ε) asymptotically convex as soon as ε < 1 −
21/p−1.

The next de�nition was �rst introduced in [29]. We give it in the general case for
p ∈ [1,∞) but only p = 1 will be of interest in what follows.

De�nition 4.2.3. Let p ∈ [1,∞). We say that `p is asymptotically �nitely representable
in X if for every ε > 0, every k ∈ N, there exists a weakly null tree (xn)n∈[N]≤k ⊂ BX such
that

(1− ε)‖a‖`kp ≤
∥∥∥ k∑
j=1

ajx(n1,...,nj)

∥∥∥ ≤ (1 + ε)‖a‖`kp

for all n ∈ [N]k and all a = (a1, · · · , ak) ∈ Rk. We say that `p is asymptotically crudely
�nitely representable in X if we can �nd C > 0 such that, for every k ∈ N, there exists a
weakly null tree (xn)n∈[N]≤k ⊂ BX such that

1

C
‖a‖`kp ≤

∥∥∥ k∑
j=1

ajx(n1,...,nj)

∥∥∥ ≤ C‖a‖`kp

for all n ∈ [N]k and all a = (a1, · · · , ak) ∈ Rk.
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Let us notice that �`p is asymptotically crudely �nitely representable in X� only means
in other words that the `np , n ∈ N, are uniformly present in the asymptotic structure of
X but naming it that way makes it easier when it comes to make parallels with the local
results.

4.2.2 Asymptotic types

Let us �nish this subsection by introducing the asymptotic versions of the types involved
in Theorem 4.0.1.

First, we recall the reader that a random variable ξ on a probability space is called
p-stable (0 < p ≤ 2) if its characteristic function is of the form t ∈ R 7→ E(eitξ) = e−c|t|

p
,

for some positive constant c = c(p). It is known that, if ξ is a p-stable random variable,
then ξ /∈ Lp and ξ ∈ Lq for all 0 < q < p (see [2] for example). In this chapter, we will
always assume that c = 1 when considering stable variables.

We also want to recall two famous inequalities.

Theorem 4.2.4 (Kahane Theorem [62]). Let X be a Banach space and let (εn) be a
sequence of i.i.d Rademacher random variables.
Then, for all p, q > 0, there exists a constant K > 0 such that, for any �nite sequence
(xn) ⊂ X,

E

(∥∥∥∑
n

εxn

∥∥∥q)1/q

≤ KE

(∥∥∥∑
n

εxn

∥∥∥p)1/p

.

Theorem 4.2.5 (Ho�mann-Jørgensen Theorem [53]). Let X be a Banach space and let
(ξn) be a sequence of i.i.d s-stable random variables, 0 < s ≤ 2.
Then, for each p, q ∈ (0, s) if s < 2, and each p, q ∈ (0,∞) if s = 2, there exists a constant
K > 0 such that, for any �nite sequence (xn) ⊂ X,

E

(∥∥∥∑
n

ξnxn

∥∥∥q)1/q

≤ KE

(∥∥∥∑
n

ξnxn

∥∥∥p)1/p

.

Let X be a Banach space. We now introduce the asymptotic types.

De�nition 4.2.6. • Let p ∈ [1,∞]. We say that X has asymptotic infratype p if there
exists C > 0 such that for each k ∈ N, every weakly null tree (xn)n∈[N]≤k ⊂ BX , every
a = (a1, . . . , ak) ∈ Rk, we can �nd n ∈ [N]k such that

min
(εj)kj=1∈{±1}k

∥∥∥ k∑
j=1

εjajx(n1,...,nj)

∥∥∥ ≤ C‖a‖`kp .

• Let p ∈ [1,∞) and (εn) be a sequence of i.i.d Rademacher random variables.
We say that a Banach space X has asymptotic Rademacher type p if there exists C > 0
such that, for each k ∈ N, for every weakly null tree (xn)n∈[N]≤k ⊂ BX , for every a =
(a1, . . . , ak) ∈ Rk, we can �nd n ∈ [N]k such that

E

(∥∥∥ k∑
j=1

εjajx(n1,...,nj)

∥∥∥p)1/p

≤ C‖a‖`kp .
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• Let p ∈ (0, 2] and (ξi) be a sequence of i.i.d p-stable random variables with the charac-
teristic function t ∈ R 7→ E(eitξ1) = e−|t|

p
.

We say that a Banach space X has asymptotic stable type p if there exists C > 0
such that, for each k ∈ N, for every weakly null tree (xn)n∈[N]≤k ⊂ BX , for every
a = (a1, . . . , ak) ∈ Rk, we can �nd n ∈ [N]k such that

E

(∥∥∥ k∑
j=1

ξjajx(n1,...,nj)

∥∥∥ p
2

)2/p

≤ C‖a‖`kp .

By Kahane Theorem and Ho�mann-Jørgensen Theorem, we can immediately note the
following.
Remark 4.2.7. • By Kahane Theorem, X has asymptotic Rademacher type p i� for every
q ∈ [1,∞), there exists C > 0 such that, for each k ∈ N, for every weakly null tree
(xn)n∈[N]≤k ⊂ BX , for every a = (a1, . . . , ak) ∈ Rk, we can �nd n ∈ [N]k such that

E

(∥∥∥ k∑
j=1

εjajx(n1,...,nj)

∥∥∥q)1/q

≤ C‖a‖`kp .

• By Ho�mann-Jørgensen Theorem, X has asymptotic stable type p ∈ (0, 2) i� for ev-
ery q ∈ (0, p), there exists C > 0 such that, for all k ∈ N, for every weakly null tree
(xn)n∈[N]≤k ⊂ BX , for all a = (a1, . . . , ak) ∈ Rk, we can �nd n ∈ [N]k such that

E

(∥∥∥ k∑
j=1

ξjajx(n1,...,nj)

∥∥∥q)1/q

≤ C‖a‖`kp

and X has asymptotic stable type 2 i� for every q ∈ (0,∞), there exists C > 0 such that,
for all k ∈ N, for every weakly null tree (xn)n∈[N]≤k ⊂ BX , for all a = (a1, . . . , ak) ∈ Rk,
we can �nd n ∈ [N]k such that

E

(∥∥∥ k∑
j=1

ξjajx(n1,...,nj)

∥∥∥q)1/q

≤ C‖a‖`k2 .

Ramsey's Theorem even allows us to exchange some quanti�ers. We only prove it for
asymptotic Rademacher type but a similar result can be proved for the others.

Lemma 4.2.8. Let p ∈ (1,∞). Then X has asymptotic Rademacher type p i� there
exists D > 0 such that, for all k ∈ N, for every weakly null tree (xn)n∈[N]≤k ⊂ BX , we can
�nd n ∈ [N]k such that, for all a = (a1, . . . , ak) ∈ Rk, we have:

E

(∥∥∥ k∑
j=1

εjajx(n1,...,nj)

∥∥∥) ≤ D‖a‖`kp .

By Kahane Theorem, we immediatly deduce that X has asymptotic Rademacher type p
i�, for every q ∈ [1,∞), there exists D > 0 such that, for all k ∈ N, for every weakly null
tree (xn)n∈[N]≤k ⊂ BX , we can �nd n ∈ [N]k such that, for all a = (a1, . . . , ak) ∈ Rk, we
have:

E

(∥∥∥ k∑
j=1

εjajx(n1,...,nj)

∥∥∥q)1/q

≤ D‖a‖`kp .



74 CHAPTER 4. SOME ASYMPTOTIC TYPES

Proof. Assume X has asymptotic Rademacher type p. There exists C > 0 such that, for
all k ∈ N, for every weakly null tree (xn)n∈[N]≤k ⊂ BX , for all a = (a1, . . . , ak) ∈ Rk, we
can �nd n ∈ [N]k such that

E

(∥∥∥ k∑
j=1

εjajx(n1,...,nj)

∥∥∥) ≤ C‖a‖`kp .

Let k ∈ N, (xn)n∈[N]≤k ⊂ BX a weakly null tree.
Let η = 1

k1/q
where q is the conjugate exponent of p, N an η-net of B`kp

. By Theorem
2.1.1, there exists n ∈ [N]k such that

∀b = (b1, . . . , bk) ∈ N, E

(∥∥∥ k∑
j=1

εjbjx(n1,...,nj)

∥∥∥) ≤ C.

Let a = (a1, . . . , ak) ∈ B`kp
. There exists b ∈ N so that ‖a− b‖`kp ≤ η. We deduce

E

(∥∥∥ k∑
j=1

εjajx(n1,...,nj)

∥∥∥) ≤ C + E

(∥∥∥ k∑
j=1

εj(aj − bj)x(n1,...,nj)

∥∥∥)
≤ C + k1/qη ≤ C + 1.

In order to follow Pisier's presentation and make some proofs easier to understand, we
chose to prove the two following results separately. LetX be a Banach space with separable dual.

Theorem 4.2.9. The following assertions are equivalent:
(i) `1 is not asymptotically �nitely representable in X ;
(ii) `1 is not asymptotically crudely �nitely representable in X ;
(iii) X is asymptotically B-convex.

Theorem 4.2.10. The following assertions are equivalent:
(i) `1 is not asymptotically �nitely representable in X ;
(ii) X has asymptotic infratype p for some p > 1 ;
(iii) X has asymptotic Rademacher type p for some p > 1 ;
(iv) X has asymptotic stable type p for some p > 1 ;
(v) X has asymptotic stable type 1.

4.3 Asymptotic B-convexity

This subsection is dedicated to the proof of Theorem 4.2.9. We �rst start with the easiest
implication.

Proposition 4.3.1. If `1 is not asymptotically �nitely representable in X, then X is
asymptotically B-convex.
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Proof. Assume that X is not asymptotically B-convex. Let k ∈ N, ε > 0. Then there
exists a weakly null tree (xn)n∈[N]≤k ⊂ BX such that:

∀n ∈ [N]k, inf
(εj)kj=1∈{±1}k

∥∥∥ k∑
j=1

εjx(n1,...,nj)

∥∥∥ ≥ k − ε.

Let a = (aj)
k
j=1 ∈ S`k1 and n ∈ [N]k. For every 1 ≤ j ≤ k, we denote εj = sgn(aj). Then

we have:

k − ε ≤
∥∥∥ k∑
j=1

εjx(n1,...,nj)

∥∥∥ =
∥∥∥ k∑
j=1

[εj(1− |aj|) + aj]x(n1,...,nj)

∥∥∥
≤

k∑
j=1

(1− |aj|) +
∥∥∥ k∑
j=1

ajx(n1,...,nj)

∥∥∥
= k − 1 +

∥∥∥ k∑
j=1

ajx(n1,...,nj)

∥∥∥.
The result follows by homogeneity.

We use now the separability of X∗. Let (x∗n) ⊂ X∗ be a dense sequence. For every
n ∈ N, and every ε > 0, we let

Vn,ε = {x ∈ X; ∀i ∈ {1, · · · , n}, |x∗i (x)| < ε}.

For every k ∈ N, let us denote by λk(X) the smallest possible constant λ ≥ 0 such
that for every weakly null tree (xn)n∈[N]≤k ⊂ BX , there exists n ∈ [N]k such that

inf
(εj)kj=1∈{±1}k

∥∥∥ k∑
j=1

εjx(n1,...,nj)

∥∥∥ ≤ λk.

If `1 is asymptotically crudely �nitely representable in X, is it easy to see that there
exists C > 0 such that λk(X) ≥ C for every k ∈ N. In order to prove that X asymp-
totically B-convex implies `1 not asymptotically crudely �nitely representable in X, it is
then enough to prove that if X is asymptotically B-convex, then lim inf

n→∞
λn(X) = 0. To do

so, we use the submultiplicativity method developed by Pisier. It is worth noticing that
even though the ideas to prove Theorem 4.2.9 and 4.2.10 are the same as Pisier's, one has
to use more technical arguments to get the submultiplicativity results when it comes to
asymptotic theory.

Lemma 4.3.2. For all k, l ∈ N, we have λkl(X) ≤ λk(X)λl(X).

Proof. Let k, l ∈ N, (xn)n∈[N]≤kl ⊂ BX be a weakly null tree, λk > λk(X), λl > λl(X).
By a Ramsey argument, we can assume that there exist ε1

1, · · · , ε1
k ∈ {±1} such that

∀n ∈ [N]k,
∥∥∥ k∑
j=1

ε1
jx(n1,...,nj)

∥∥∥ ≤ kλk.
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Let m ∈ N. We construct n1,m
1 < · · · < n1,m

k such that ε1
jx(n1,m

1 ,...,n1,m
j ) ∈ Vm, 1

km
for all 1 ≤

j ≤ k. Then we let Xm = 1
kλk

∑k
j=1 ε

1
jx(n1,m

1 ,...,n1,m
j ), where

∑k
j=1 ε

1
jx(n1,m

1 ,...,n1,m
j ) ∈ Vm,1/m.

Let us �x m1 ∈ N. Again, by a Ramsey argument, we can assume that there exist
ε2

1, · · · , ε2
k ∈ {±1} such that

∀n ∈ [N]k, n1 > n1,m1

k =⇒
∥∥∥ k∑
j=1

ε2
jx(n

1,m1
1 ,...,n

1,m1
k ,n1,...,nj)

∥∥∥ ≤ kλk.

We de�ne (Xm1,m)m>m1 as above.
We can therefore build inductively a weakly null tree (Xm)m∈[N]≤l ⊂ BX . Now, by de�ni-
tion of λl(X), we can �nd m ∈ [N]l and δ1, · · · , δl ∈ {±1} such that

∥∥∥ l∑
j=1

δjXm1,...,mj

∥∥∥ ≤ lλl.

This means that∥∥∥ l∑
i=1

ik∑
j=(i−1)k+1

δiε
i
jx(n

1,m1
1 ,...,n

1,m1
k ,...,n

i−1,mi−1
1 ,...,n

i−1,mi−1
k ,n

i,mi
1 ,...,n

i,mi
j )

∥∥∥ ≤ lkλkλk

The result follows.

Let us complete the proof of Theorem 4.2.9. The fact that (ii) implies (i) is clear
and we have seen that (i) implies (ii) at the very beginning of this section. Now, if X
is asymptotically B-convex, i.e λk(X) < 1 for some k ∈ N, then lim

n→+∞
λkn(X) = 0 and

thus we cannot �nd C > 0 such that λl(X) ≥ C for every l ∈ N. Therefore, if X is
asymptotically B-convex, then `1 is not asymptotically crudely �nitely representable in
X.

4.4 Asymptotic analogues of results concerning types

Before proving our main results, we recall the two following results of Pisier that can be
found in [90].

Proposition 4.4.1 (Proposition 1 [90]). Let (ϕn) be a symmetric sequence of integrable
real random variables and (xn) be a �nite sequence in X. We have

∀p ∈ [1,∞), inf
n
‖ϕn‖L1E

(∥∥∥∑ εnxn

∥∥∥p)1/p

≤ E
(∥∥∥∑ϕnxn

∥∥∥p)1/p

.

Lemma 4.4.2 (Lemme 2 [90]). Let a = (an)n∈N be a sequence of real numbers, let 0 <
r < q < p ≤ 2, let (ξn) be a sequence of i.i.d q-stable random variables. We have

‖ξ1‖r‖a‖`q ≤ E
((∑

|an|p|ξn|p
)r/p)1/r

≤ ‖ξ1‖r‖g1‖q
‖g1‖r

‖a‖`q

where g1 is a p-stable random variable.
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Then, we can prove an asymptotic version of Corollaire 1 and Proposition 3 of [90].

Proposition 4.4.3. Let p ∈ [1, 2].
(i) If X has asymptotic stable type p, then X has asymptotic Rademacher type p.
(ii) If X has asymptotic Rademacher type p, then X has asymptotic stable type q for all
q ∈ (0, p).

Proof. (i) We can assume p > 1. Let C > 0 given by the De�nition 4.2.6 of asymptotic
stable type p.
Let k ∈ N, (xn)n∈[N]≤k ⊂ BX be a weakly null tree, a = (a1, . . . , ak) ∈ Rk. We can �nd
n ∈ [N]k such that

E

(∥∥∥ k∑
j=1

ξjajx(n1,...,nj)

∥∥∥) ≤ C‖a‖`kp .

To conclude, we use Remark 4.2.7 and apply Proposition 4.4.1 with xj = ajx(n1,...,nj),
p = 1 et ϕj = ξj.
(ii) Let q ∈ (0, p), r ∈ (0, q), (ξn) q-stable random variables. By Lemma 4.2.8, there exists
C > 0 such that, for all k ∈ N, for every weakly null tree (xn)n∈[N]≤k ⊂ BX , we can �nd
n ∈ [N]k such that, for all a = (a1, . . . , ak) ∈ Rk, we have:

E

(∥∥∥ k∑
j=1

εjajx(n1,...,nj)

∥∥∥r)1/r

≤ C‖a‖`kp .

Let k ∈ N, (xn)n∈[N]≤k ⊂ BX be a weakly null tree, n ∈ [N]k given above. Let a =
(a1, . . . , ak) ∈ Rk.
For all θ ∈ Ω, we have

Eε

(∥∥∥ k∑
j=1

εjξj(θ)ajx(n1,...,nj)

∥∥∥r) ≤ Cr

(
k∑
j=1

|aj|p|ξj(θ)|p
)r/p

.

Therefore

E

(∥∥∥ k∑
j=1

ξjajx(n1,...,nj)

∥∥∥r)1/r

=

[
EξEε

(∥∥∥ k∑
j=1

ξjεjajx(n1,...,nj)

∥∥∥r)]1/r

≤ Eξ

Cr

(
k∑
j=1

|aj|p|ξj|p
)r/p

1/r

.

The conclusion follows from Lemma 4.4.2.

We are now going to prove Theorem 4.2.10. As earlier, the idea is to use Pisier's
submultiplicativity method with more technical arguments. We start with a lemma.

Lemma 4.4.4. Let p′ ∈ [1,∞), p its conjugate exponent. Assume that λl(X) = l−1/p′ for
some l ∈ N.
Then X has asymptotic infratype q for all q < p.
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Proof. Let q < p, k ∈ N, let (xn)n∈[N]≤k ⊂ BX be a weakly null tree, a = (a1, . . . , ak) ∈ Rk.
For all r ≥ 0 let us denote

Ar =

{
1 ≤ j ≤ k;

‖a‖`kq
l(r+1)/q

< |aj| ≤
‖a‖`kq
lr/q

}
and B = {r ∈ N;Ar 6= ∅}.

We note that B is �nite. Since B is �nite, by Ramsey's Theorem, we can �nd n ∈ [N]k

such that, for all r ∈ B, we have

min
(εj)kj=1∈{±1}k

∥∥∥∑
j∈Ar

εjajx(n1,...,nj)

∥∥∥ ≤ |Ar|λ|Ar|(X)
‖a‖`kq
lr/q

.

Now, by the triangle inequality, we have

min
(εj)kj=1∈{±1}k

∥∥∥ k∑
j=1

εjajx(n1,...,nj)

∥∥∥ ≤∑
r∈B

min
(εj)kj=1∈{±1}k

∥∥∥∑
j∈Ar

εjajx(n1,...,nj)

∥∥∥
and ‖a‖`kq ≥ |Ar|

1/q
‖a‖

`kq

l(r+1)/q so |Ar| ≤ lr+1. Since the sequence (nλn(X))n∈N is clearly
non-decreasing, we can deduce that

min
(εj)kj=1∈{±1}k

∥∥∥ k∑
j=1

εjajx(n1,...,nj)

∥∥∥ ≤∑
r∈B

|Ar|λ|Ar|(X)
‖a‖`kq
lr/q

≤
∑
r∈B

lr+1λlr+1(X)

lr/q
‖a‖`kq

≤
∑
r∈B

lr+1λl(X)r+1

lr/q
‖a‖`kq

=
∑
r∈B

lr+1

lr/ql(r+1)/p′
‖a‖`kq

≤ l1/p

(
∞∑
r=0

(l1−1/q−1/p′)r

)
‖a‖`kq .

We conclude by noting that
∑∞

r=0(l1−1/q−1/p′)r <∞.

From this, we can immediately deduce the �rst part of the following result, which is
an asymptotic version of Proposition 2 of [91]. We prove the second part to continue the
parallel with the local situation even though we will not use it.

Proposition 4.4.5. X is asymptotically B-convex if and only if X has asymptotic in-
fratype p for some p > 1.
Moreover, if we denote by Λ(X) the supremum of all p ≥ 1 such that X has infratype p,
then

Λ(X) = lim
n→+∞

ln(n)

ln(nλn(X))
.
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Proof. By de�nition, X is asymptotically B-convex i� λn(X) < 1 for some n ≥ 2, i.e
i� there exists p′ ∈ [1,∞) such that λn(X) = 1

n1/p′ . So the �rst part of the proposition
follows from Lemma 4.4.4.
Let us prove the second part of the proposition.
• Let p such that X has infratype p. There exists C > 0 such that for all n ≥ 2,
nλn(X) ≤ Cn1/p so

lim inf
ln(n)

ln(nλn(X))
≥ lim inf

ln(n)

ln(C) + 1
p

ln(n)
= p.

Thus lim inf ln(n)
ln(nλn(X))

≥ Λ(X).
• If q > Λ(X), by Lemma 4.4.4, we have nλn(X) ≥ n1/q for all n ≥ 2. Therefore

lim sup
ln(n)

ln(nλn(X))
≤ lim sup

ln(n)
1
q

ln(n)
= q.

Thus lim sup ln(n)
ln(nλn(X))

≤ Λ(X).

To prove Theorem 4.2.10, as said before, we will use another submultiplicativity ar-
gument. To do so, we introduce a few notation.
For k ∈ N, we will denote by µk(X) the smallest possible constant µ ≥ 0 such that for
every weakly null tree (xn)n∈[N]≤k ⊂ BX , we can �nd n ∈ [N]k so that

E

(∥∥∥ k∑
j=1

εjx(n1,...,nj)

∥∥∥2
)1/2

≤ µk.

Since the map k 7→ µk(X) is not submultiplicative a priori, we introduce one more quantity
which will be. For k ∈ N, we will denote by νk(X) the smallest possible constant ν ≥ 0
such that for every weakly null tree (xn)n∈[N]≤k ⊂ BX , for all a = (a1, · · · , ak) ∈ Rk, we
can �nd n ∈ [N]k so that

E

(∥∥∥ k∑
j=1

εjajx(n1,...,nj)

∥∥∥2
)1/2

≤ ν
√
k‖a‖`k2 .

Note that, for all k ∈ N, we have λk(X) ≤ µk(X) ≤ νk(X) ≤ 1.
The key lemma is the following.

Lemma 4.4.6. For all k, l ∈ N, we have νkl(X) ≤ νk(X)νl(X).

Proof. Let k, l ∈ N, νk > νk(X), νl > νl(X), (xn)n∈[N]≤k ⊂ BX a weakly null tree, a =
(a1, · · · , akl) ∈ Rkl.
By a Ramsey argument, we can assume that

∀n ∈ [N]k,E

(∥∥∥ k∑
j=1

εjajx(n1,...,nk)

∥∥∥2
)1/2

≤ νk
√
k

(
k∑
j=1

|aj|2
)1/2

.
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We recall that for every n ∈ N, and every ε > 0, we let

Vn,ε = {x ∈ X; ∀i ∈ {1, · · · , n}, |x∗i (x)| < ε}.

Let m ∈ N. We construct n1,m
1 < · · · < n1,m

k such that ajx(n1,m
1 ,...,n1,m

j ) ∈ Vm, 1
km

for all 1 ≤
j ≤ k. Then, for every δ = (δ1, · · · , δk) ∈ {±1}k, we let Xm(δ) =

∑k
j=1 δjajx(n1,m

1 ,...,n1,m
j ) ∈

Vm,1/m.
Let us �x m1 ∈ N. Again, by a Ramsey argument, we can assume that

∀n ∈ [N]k, n1 > n1,m1

k =⇒ E

(∥∥∥ k∑
j=1

εjak+jx(n
1,m1
1 ,...,n

1,m1
k ,n1,...,nj)

∥∥∥2
)1/2

≤ νk
√
k

(
2k∑

j=k+1

|aj|2
)1/2

.

For every δ = (δ1, · · · , δk) ∈ {±1}k, we de�ne (Xm1,m(δ))m>m1 as above.
For every (δ1

1, · · · , δ1
k, δ

2
1, · · · , δ2

k, · · · , δl1, · · · , δlk) ∈ {±1}kl, we can therefore build induc-
tively a weakly null tree (Xm((δ

|m|
1 , · · · , δ|m|k ))m∈[N]≤l . Let (ηj)j∈N be a sequence of iid

Rademacher variables independant of (εj)j∈N. By de�nition of νl(X), since {±1}kl is
�nite, we can �nd m ∈ [N]l so that

∀(δ1
1, · · · , δ1

k, · · · , δl1, · · · , δlk) ∈ {±1}kl, Eη
(∥∥∥ l∑

j=1

ηjX(m1,...,mj)(δ
j)
∥∥∥2)
≤ ν2

l l
( l∑
j=1

‖X(m1,...,mj)(δ
j)‖2

)
.

This ensures that

1

2kl

∑
(δji )1≤i≤k

1≤j≤l

∈{±1}kl

Eη
(∥∥∥ l∑

i=1

ik∑
j=(i−1)k+1

ηiδ
i
j−(i−1)kajx(n

1,m1
1 ,...,n

1,m1
k ,...,n

i−1,mi−1
1 ,...,n

i−1,mi−1
k ,n

i,mi
1 ,...,n

i,mi
j )

∥∥∥2)

≤ 1

2kl

∑
(δji )1≤i≤k

1≤j≤l

∈{±1}kl

ν2
l l
( l∑
i=1

∥∥∥ ik∑
j=(i−1)k+1

δij−(i−1)kajx(n
1,m1
1 ,...,n

1,m1
k ,...,n

i−1,mi−1
1 ,...,n

i−1,mi−1
k ,n

i,mi
1 ,...,n

i,mi
j )

∥∥∥2)

≤ ν2
l l × ν2

kk

l∑
i=1

ik∑
j=(i−1)k+1

|aj|2 = klν2
kν

2
l ‖a‖2

`kl2
.

Since

1

2kl

∑
(δji )1≤i≤k

1≤j≤l

∈{±1}kl

Eη
(∥∥∥ l∑

i=1

ik∑
j=(i−1)k+1

ηiδ
i
j−(i−1)kajx(n

1,m1
1 ,...,n

1,m1
k ,...,n

i−1,mi−1
1 ,...,n

i−1,mi−1
k ,n

i,mi
1 ,...,n

i,mi
j )

∥∥∥2)

= E

∥∥∥ l∑
i=1

ik∑
j=(i−1)k+1

εjajx(n
1,m1
1 ,...,n

1,m1
k ,...,n

i−1,mi−1
1 ,...,n

i−1,mi−1
k ,n

i,mi
1 ,...,n

i,mi
j )

∥∥∥2

 ,

we get our result.

As before, we get an asymptotic version of Lemme 4 of [91].
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Lemma 4.4.7. Let p′ ∈ [1,∞), p its conjugate exponent. Assume that νl(X) = l−1/p′ for
some l ∈ N.
Then X is of asymptotic Rademacher type q for all q < p.

Proof. To prove this result, we just copy the proof of Lemma 4.4.4, using the fact that
µk(X) ≤ νk(X) for all k ∈ N, and Remark 4.2.7.

Now, the relation we need between the quantities λk(X), µk(X) and νk(X) is given in
the following lemma.

Lemma 4.4.8. For every k ∈ N, we have

λk(X) = 1⇐⇒ µk(X) = 1⇐⇒ νk(X) = 1.

Proof. ∗ Let k ∈ N. Let us prove that µk(X) = 1 =⇒ λk(X) = 1.
Let µ < µk(X). There exists a weakly null tree (xn)n∈[N]≤k ⊂ BX such that

∀n ∈ [N]k, E

(∥∥∥ k∑
j=1

εjx(n1,...,nj)

∥∥∥2
)1/2

≥ µk

and there exists n ∈ [N]k such that inf
(εj)kj=1∈{±1}k

∥∥∥∑k
j=1 εjx(n1,...,nj)

∥∥∥ ≤ λk(X)k.

Let us �rst notice that

E

(∥∥∥ k∑
j=1

εjyj

∥∥∥2
)
≤

inf
(εj)kj=1∈{±1}k

∥∥∥∑k
j=1 εjyj

∥∥∥2

+ (2k−1 − 1)k2

2k−1

for all y1, · · · , yk ∈ X. Indeed, we can �nd (ε̃j)
k
j=1 ∈ {±1}k such that

inf
(εj)kj=1∈{±1}k

∥∥∥ k∑
j=1

εjyj

∥∥∥2

=
∥∥∥ k∑
j=1

ε̃jyj

∥∥∥2

so

E

(∥∥∥ k∑
j=1

εjyj

∥∥∥2
)

=
1

2k

(
2 inf

(εj)kj=1∈{±1}k

∥∥∥ k∑
j=1

εjyj

∥∥∥2

+
∑

(εj)kj=1∈{±1}k\{(ε̃j)kj=1,(−ε̃j)kj=1}

∥∥∥ k∑
j=1

εjyj

∥∥∥2)

≤ 1

2k

(
2 inf

(εj)kj=1∈{±1}k

∥∥∥ k∑
j=1

εjyj

∥∥∥2

+ (2k − 2)k2
)
.

Thus, with yj = x(n1,...,nj) for 1 ≤ j ≤ k, we have

µk ≤ E

(∥∥∥ k∑
j=1

εjx(n1,...,nj)

∥∥∥2
)1/2

≤


inf

(εj)kj=1∈{±1}k

∥∥∥∑k
j=1 εjx(n1,...,nj)

∥∥∥2

+ (2k−1 − 1)k2

2k−1


1/2

≤ k

(
λk(X)2 + 2k−1 − 1

2k−1

)1/2
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and so 2k−1µ2 ≤ λk(X)2 + 2k−1 − 1.
Then, for all µ < µk(X), we have 2k−1(µ2 − 1) ≤ λk(X)2 − 1. As a consequence, we have
the desired implication.
∗ Assume now that νk(X) = 1 and let us prove that µk(X) = 1.
Let ε > 0. We can �nd a weakly null tree (xn)n∈[N]≤k ⊂ BX and a = (a1, · · · , ak) ∈ Rk

such that ‖a‖`k2 =
√
k and

∀n ∈ [N]k, E

(∥∥∥ k∑
j=1

εjajx(n1,...,nj)

∥∥∥2
)1/2

≥ (1− ε)
√
k‖a‖`k2 = (1− ε)k.

The computation in [91] (in the proof of Lemme 5) gives us max
1≤i≤n

|ai| ≤ 1 + 2
√
kε.

Now, if we put y(n1,...,nj) =
aj

1+2
√
kε
x(n1,...,nj) for every (n1, . . . , nj) ∈ [N]≤k, the tree

(yn)n∈[N]≤k ⊂ BX is weakly null and

∀n ∈ [N]k,E

(∥∥∥ k∑
j=1

εjy(n1,...,nj)

∥∥∥2
)1/2

≥ 1− ε
1 + 2

√
kε
k.

This is true for every ε > 0 so we get our implication.
∗ We conclude the proof by remembering that λk(X) ≤ µk(X) ≤ νk(X) ≤ 1.

We are now able to prove Theorem 4.2.10.

Proof of Theorem 4.2.10. (i) =⇒ (ii) was already proved.
(ii) =⇒ (iii) By assumption, there exists k ∈ N such that λk(X) < 1 and so, by Lemma
4.4.8, νk(X) < 1. Lemma 4.4.7 ensures the conclusion.
(iii) =⇒ (iv) =⇒ (v) was proved earlier.
(v) =⇒ (i) Assume that `1 is asymptotically �nitely representable in X and that X
has asymptotic stable type 1 with constant C. Let a = (an) ∈ `1. In order to get a
contradiction, let us prove that

∑
n |anξn| converges a.s.

Let k ∈ N. By our assumption, there exists a weakly null tree (xn)n∈[N]≤k ⊂ BX such that

1

2
‖b‖`k1 ≤

∥∥∥ k∑
j=1

bjxn1,···nj

∥∥∥ ≤ ‖b‖`k1
for all n ∈ [N]k and all b = (b1, . . . , bk) ∈ Rk.
Since X has asymptotic stable type 1, there exists n ∈ [N]k such that

E

(∥∥∥ k∑
j=1

ξjajx(n1,...,nj)

∥∥∥1/2
)2

≤ C‖(a1, . . . , ak)‖`k1 .

We get:

E

(( k∑
j=1

|ξjaj|
) 1

2

)2

≤ 2C‖a‖`1 .
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Therefore,
∑

n |anξn| converges a.s. Now, since
∑

n |anξn| converges a.s if and only if

(∗)
∑
n

|an|
(

1 + ln

(
1

|an|

))
<∞

(see [91] and references therein), we get a contraction by considering a = (an) ∈ `1 that
does not satisfy (∗).

Remark 4.4.9. In [29], it is proved that �`1 is not asymptotically �nitely representable in ·�
is a 3SP. Moreover, we get that asymptotic B-convexity is stable under linear isomorphism.

We conclude this subsection with a �nal remark. In the local theory, X is B-convex
if and only if its bidual X∗∗ is B-convex. In the asymptotic setting, if we consider the
dual of the Lindenstrauss space Zc0 , then X = Z∗c0 is 2-AUS-able so it is asymptotically
B-convex, but X∗∗ = X ⊕ `1 contains `1.
Besides, there is no chance of proving a result of stability under non-linear embedding by
Aharoni's Theorem, since c0 is asymptotically B-convex.
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4.5 p-uniform smoothness implies En�o type p

It is well known that a p-uniformly smooth space has En�o type p, and we are aware of
two proofs. The �rst one uses Ball's notion of Markov type. It was �rst shown in [82] that
p-uniform smoothness implies Markov type p, and later proved in [83] that Markov type p
implies En�o type p (by essentially looking at the regular random walk on the Hamming
cubes). Since linear type p is a straightforward consequence of p-uniform smoothness, the
second proof goes via the recent solution of En�o's problem by Ivanishvilli, van Handel,
and Volberg (they showed that Rademacher type p implies En�o type p). We give here
an elementary proof inspired by a martingale approach to Kalton and Randrianarivony's
result from [67]. It is likely that our alternate proof of the local result is known to some
experts but we could not locate it in the literature (the closest similar argument is possibly
the proof of Theorem 7 in [68]). It is quite surprising actually that the �rst proof of the
fact that Lq has En�o type 2 when q ≥ 2, is a consequence of a much deeper result
from [83] which solves En�o's Problem for the class of UMD spaces. The argument we
give here, combined with the classical smoothness characteristics of Lp, provides a rather
elementary proof of the fact that Lp has En�o type min{p, 2}.

Let p ∈ [1, 2]. We recall that a Banach space X is p-uniformly smooth if and only if
there exists a constant C ≥ 1 such that

‖x+ y‖p + ‖x− y‖p

2
≤ ‖x‖p + C‖y‖p

for all x, y ∈ X (cf [13]), that X has En�o type p if there exists a constant C > 0 such
that, for every n ∈ N, for every map f : {±1}n → X, we have

Eε∈{±1}n‖f(ε)− f(−ε)‖p ≤ Cp

n∑
j=1

Eε∈{±1}n‖f(ε)− f(ε1, . . . , εj−1,−εj, εj+1, . . . , εn)‖p

and we say that X has martingale type p ([101] quoting [92]) if there exists a constant S
such that ∥∥∥ n∑

k=1

dk

∥∥∥p
Lp

≤ Sp
n∑
k=1

‖dk‖pLp

for all sequences of X-valued di�erences d1, · · · , dn of dyadic martingales.
It is known that a Banach space is p-uniformly smooth up to renorming if and only if

it has martingale type p (see for instance [93]).

Lemma 4.5.1. Let Y be a Banach space that has martingale type p. Then there exists
S > 0 such that, for all k ∈ N and all f : {±1}k → Y , we have

Eε∈{±1}k‖f(ε)− E(f)‖p ≤ Sp
k∑
i=1

Eε∈{±1}iE(η,δ)∈{±1}k−i+1‖f(ε1, · · · , εi, δ1, · · · , δk−i)−

f(ε1, · · · , εi−1, η, δ1, · · · , δk−i)‖p.

Proof. By assumption, there exists S > 0 such that Y has martingale type p with constant
S. Let k ∈ N and f : {±1}k → Y . We de�ne recursively the sequence of Paley-Walsh
martingale approximations of f , (Mi(f) : {±1}k → Y )ki=0, as follows:
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1. Mk(f) = f ;

2. Mi(f) =
Mi+1(f)(ε1, · · · , εi, 1)−Mi+1(f)(ε1, · · · , εi,−1)

2
for i ∈ {0, · · · , k − 1}.

Observe that Mi(f)(ε) = Eδ∈{±1}k−if(ε1, · · · , εi, δ) for every i ∈ {1, · · · , k} and every
ε ∈ {±1}k, and that M0(f) = Eε(f(ε)). Since Y has martingale type p, we get

E‖f −M0(f)‖p ≤ Sp
k∑
i=1

E‖Mi(f)−Mi−1(f)‖p.

It remains to observe that

E‖Mi(f)−Mi−1(f)‖p = Eε∈{±1}i‖E(η,δ)∈{±1}k−i+1f(ε1, · · · , εi, δ1, · · · , δk−i)−
f(ε1, · · · , εi−1, η, δ1, · · · , δk−i)‖p

≤ Eε∈{±1}iE(η,δ)∈{±1}k−i+1‖f(ε1, · · · , εi, δ1, · · · , δk−i)−
f(ε1, · · · , εi−1, η, δ1, · · · , δk−i)‖p,

where the last line follows by convexity.

De�nition 4.5.2. For (X, dX) and (Y, dY ) two metric spaces, the Y -distorsion of X,
denoted by cY (X), is the least constant D ≥ 1 such that there exist s > 0 and a map
f : X → Y satisfying

∀x, y ∈ X, s · dX(x, y) ≤ dY (f(x), f(y)) ≤ sD · dX(x, y).

This lemma allows us to prove the following.

Theorem 4.5.3. Every p-uniformly smooth Banach space Y for some equivalent norm
has En�o type p. In particular, cY (Hk) & k1−1/p, where Hk denotes the Hamming cube
of height k: Hk = {±1}k endowed with the Hamming metric dk (dk(ε, η) =

∑
j;εj 6=ηj 1 for

all ε, η ∈ Hk).

Proof. First, it follows easily from the triangle inequality and convexity that

Eε∈{±1}k‖f(ε)− f(−ε)‖p ≤ 2pE‖f − E(f)‖p = 2pE‖f −M0(f)‖p.

Moreover, since Y has martingale type p (see [92] and [89]), the previous lemma ensures
the existence of an S > 0 such that, for all k ∈ N and all f : {±1}k → Y , we have

Eε∈{±1}k‖f(ε)− E(f)‖p ≤ Sp
k∑
i=1

Eε∈{±1}iE(η,δ)∈{±1}k−i+1‖f(ε1, · · · , εi, δ1, · · · , δk−i)−

f(ε1, · · · , εi−1, η, δ1, · · · , δk−i)‖p.



86 CHAPTER 4. SOME ASYMPTOTIC TYPES

Now,

Eε∈{±1}iEδ∈{±1}k−i+1‖f(ε1, · · · , εi, δi+1, · · · , δk)− f(ε1, · · · , εi−1, δi, δi+1, · · · , δk)‖p

=
1

2k+1

∑
ε∈{±1}i

∑
δ∈{±1}k−i

[‖f(ε1, · · · , εi, δ)− f(ε1, · · · , εi−1,−1, δ)‖p

+‖f(ε1, · · · , εi, δ)− f(ε1, · · · , εi−1, 1, δ)‖p

=
1

2k+1

∑
ε∈{±1}i−1

∑
δ∈{±1}k−i

[‖f(ε1, · · · , εi−1,−1, δ)− f(ε1, · · · , εi−1,−1, δ)‖p

+‖f(ε1, · · · , εi−1,−1, δ)− f(ε1, · · · , εi−1, 1, δ)‖p + ‖f(ε1, · · · , εi−1, 1, δ)− f(ε1, · · · , εi−1, 1, δ)‖p

+‖f(ε1, · · · , εi−1, 1, δ)− f(ε1, · · · , εi−1,−1, δ)‖p]

=
1

2k+1

∑
ε∈{±1}i−1

∑
δ∈{±1}k−i

[‖f(ε1, · · · , εi−1,−1, δ)− f(ε1, · · · , εi−1, 1, δ)‖p

+‖f(ε1, · · · , εi−1, 1, δ)− f(ε1, · · · , εi−1,−1, δ)‖p]

=
1

2k+1

∑
ε∈{±1}i

∑
δ∈{±1}k−i

‖f(ε1, · · · , εi, δ)− f(ε1, · · · , εi−1,−εi, δ)‖p

=
1

2k+1

∑
ε∈{±1}k

‖f(ε)− f(ε1, · · · , εi−1,−εi, εi+1, · · · , εk)‖p

=
1

2
Eε∈{±1}k‖f(ε)− f(ε1, · · · , εi−1,−εi, εi+1, · · · , εk)‖p.

Therefore,

Eε∈{±1}k‖f(ε)− f(−ε)‖p ≤ 2p−1Sp
k∑
i=1

Eε∈{±1}k‖f(ε)− f(ε1, · · · , εi−1,−εi, εi+1, · · · , εk)‖p.

Remark 4.5.4. Note that we also have

Eε,ε′∈{±1}k‖f(ε)− f(ε′)‖p ≈ E‖f − E(f)‖p.

Using the fact that there is a good proportion of pairs of points that are at distance at
least k/2 (in fact 1

2

∑k
i=k/2 2k

(
k
i

)
such pairs) and since

∑k
i=k/2

(
k
i

)
& 2k, the distortion

lower bound also follows from the alternate inequality

Eε,ε′∈{±1}k‖f(ε)− f(ε′)‖p ≤ Sp
k∑
i=1

Eε∈{±1}iE(η,δ)∈{±1}k−i+1‖f(ε1, · · · , εi, δ1, · · · , δk−i)−

f(ε1, · · · , εi−1, η, δ1, · · · , δk−i)‖p

and the fact that

∀ε ∈ {±1}k ‖f(ε)− f(ε1, · · · , εi−1,−εi, εi+1, · · · , εk)‖p ≤ Lip(f)p.
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4.6 Final remarks and open problems

4.6.1 A remark concerning concentration properties of Lipschitz

maps de�ned on the Hamming graphs

For a re�exive Banach space X, the weakest linear condition one can think of in order to
have a concentration property that prevents the equi-Lipschitz embedding of the Hamming
graphs would be the existence of a function ϕ : N→ R+ satisfying lim

k→∞
ϕ(k)
k

= 0 and, for

every k ∈ N, every weakly null tree (xn)n∈[N]≤k ⊂ BX , there exists n ∈ [N]k so that∥∥∥ k∑
j=1

x(n1,...,nj)

∥∥∥ ≤ ϕ(k).

However, if we denote γk(X), for k ∈ N, the smallest possible constant γ such that for
every weakly null tree (xn)n∈[N]≤k ⊂ BX , there exists n ∈ [N]k such that∥∥∥ k∑

j=1

x(n1,...,nj)

∥∥∥ ≤ γk,

one can prove as we did before that, for all k, l ∈ N, γkl(X) ≤ γk(X)γl(X). Therefore,
in view of Lemma 4.4.4, if γk(X) < 1 for some k ∈ N, then there exists p′ ∈ [1,∞) such
that γk(X) = 1

k1/p
′ and X is q-AUS-able for all q < p, 1

p
+ 1

p′
= 1. Thus, the existence

of such a function ϕ is not weaker than asking for asymptotic uniform smoothness up to
renorming.

4.6.2 A remark concerning upper `p tree estimates

If X has a weak unconditional asymptotic structure, then, by de�nition, there exists a
constant C such that for every k ∈ N, for every weakly null tree (xn)n∈[N]≤k ⊂ BX , one
can �nd n ∈ [N]k so that ∥∥∥ k∑

j=1

εjx(n1,··· ,nj)

∥∥∥ ≤ C
∥∥∥ k∑
j=1

x(n1,··· ,nj)

∥∥∥
for all (ε1, · · · , εk) ∈ {±1}k.
It follows that if X has asymptotic Rademacher type p ∈ (1,∞) and X has a weak
unconditional asymptotic structure, then X has Ap (see Chapter 1). In particular, X is
q-AUS-able for all q ∈ (1, p).

4.6.3 Another di�erence between the local and asymptotic set-

tings

In the local setting, if a Banach space X uniformly contains the `n∞, n ∈ N, then it
uniformly contains all the �nite dimensional spaces. However, if the `n∞, n ∈ N, are
uniformly in the asymptotic structure of X, it does not mean that all the �nite dimen-
sional spaces can be uniformly found in its asymptotic structure. Indeed, if you consider
any asymptotic-c0 space, then `1 cannot be asymptotically �nitely representable in it by
Theorem 4.2.9 and 4.2.2.
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4.6.4 Open questions

We conclude this chapter with the following questions.

Problem 4.6.1. Does (2, ε) asymptotic convexity for some ε > 0 imply asymptotic
uniform smoothness up to renorming?

Problem 4.6.2. Can one �nd an asymptotic notion of K-convexity that would be equiv-
alent to asymptotic B-convexity?

Problem 4.6.3. Does a re�exive asymptotic B-convex Banach space have a concentration
property from Chapter 2?



Appendix A

Distance between c0 and some C(K)

The goal of this appendix is to give a di�erent proof of the following fact due to Candido
and Galego in 2012 [22].

Theorem A.0.1 ([22]). For every n ∈ N, dBM(C([0, ωn]), c0) ≥ 2n+ 1.

To prove this lower bound, Candido and Galego use results coming from measure the-
ory and topology in order to generalize Cambern's proof of the fact that dBM(c, c0) = 3
(see [21]). As for us, we are going to use asymptotic considerations of the spaces at stake.

To see the idea behind our proof, we start by proving the following proposition that
will be generalized soon after.

Proposition A.0.2. Let Y be a subspace of c0. Then dBM(c, Y ) ≥ 3.

Proof. Let T : Y → c be a linear isomorphism such that ‖T−1‖ = 1.
First, note that xn = T−1(en − sn) is in BY , where u = (1)n∈N and sn = u−

∑n
j=1 ej for

n ∈ N. Next, we have

3 ≤ lim inf |(e∗n − δω)(en − sn)|+ |δω(u)| = lim inf |(e∗n − δω) ◦ T (xn)|+ |δω ◦ T (T−1(u))|
≤ lim inf ‖(e∗n − δω) ◦ T‖+ ‖δω ◦ T‖ since (xn) ⊂ BY and T−1(u) ∈ BY

≤ lim inf ‖(e∗n − δω) ◦ T + δω ◦ T‖ since ((e∗n − δω) ◦ T ) ⊂ Y ∗ is weak∗-null and Y ⊂ c0

= lim inf ‖e∗n ◦ T‖ ≤ ‖T‖.

The conclusion follows.

Let X be a Banach space. For every weak∗ compact set K ⊂ X∗ and ε > 0, we write

lε(K) = {x∗ ∈ K; ∃(x∗n) ⊂ K, ω∗ − limx∗n = x∗ and ‖x∗n − x∗‖ ≥ ε ∀n}.

We can now state the following result, which easily implies A.0.1.

Proposition A.0.3. Let Y be a subspace of c0. For every Banach space X, we have

dBM(Y,X) ≥ max
k∈N,ε1,··· ,εk>0

lε1 lε2 ···lεk (BX∗ )6=∅

max
x∗∈lε1 lε2 ···lεk (BX∗ )

‖x∗‖+ ε1 + ε2 + · · ·+ εk.

89
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Proof. Let k ∈ N, ε1, . . . , εk > 0, x∗ ∈ lε1lε2 . . . lεk(BX∗). Let δ > 0, T : Y → X such that
‖T−1‖ = 1.
We can �nd x ∈ BX and sequences (x∗n1

)n1∈N, . . . , (x
∗
n1,...,nk

)n1,...,nk∈N ⊂ BX∗ ,
(xn1)n1∈N, . . . , (xn1,...,nk

)n1,...,nk∈N ⊂ SX such that x∗(x) ≥ ‖x∗‖ − δ, (x∗n1
)n1∈N weak∗ con-

verges to x∗, (x∗n1
−x∗)(xn1) ≥ ε1− δ for every n1 ∈ N, (x∗n1,...,nj−1,nj

)nj∈N weak∗ converges
to x∗n1,...,nj−1

, (x∗n1,...,nj−1,nj
− x∗n1,...,nj−1

)(xn1,...,nj−1,nj
) ≥ εj − δ for every j ∈ {2, · · · , k} and

every (n1, · · · , nj) ∈ Nj. Now, for all (n1, · · · , nj) ∈ Nj, we have

ε1 + ε2 + · · ·+ εk + ‖x∗‖ − (k + 1)δ ≤ (x∗n1
− x∗)(xn1) +

k∑
j=2

(x∗n1,··· ,nj
− x∗n1,··· ,nj−1

)(xn1,··· ,nj
) + x∗(x)

= (x∗n1
− x∗) ◦ T (T−1xn1) +

k∑
j=2

(x∗n1,··· ,nj
− x∗n1,··· ,nj−1

) ◦ T (T−1xn1,··· ,nj
) + x∗ ◦ T (T−1x)

≤ ‖(x∗n1
− x∗) ◦ T‖+

k∑
j=2

‖(x∗n1,··· ,nj
− x∗n1,··· ,nj−1

) ◦ T‖+ ‖x∗ ◦ T‖

Since Y is a subset of c0, we can �nd (n1, · · · , nk) ∈ Nk so that

‖(x∗n1
− x∗) ◦ T‖+ ‖x∗ ◦ T‖ ≤ ‖x∗n1

◦ T‖+ δ

and
‖(x∗n1,··· ,nj

− x∗n1,··· ,nj−1
) ◦ T‖+ ‖x∗n1,··· ,nj−1

◦ T‖ ≤ ‖x∗n1,··· ,nj
◦ T‖+ δ

for every j ∈ {2, · · · , k}. This gives us

ε1 + ε2 + · · ·+ εk + ‖x∗‖ − (k + 1)δ ≤ ‖x∗n1,··· ,nk
◦ T‖+ kδ ≤ ‖T‖+ kδ.

The result follows since we can take δ as small as we want.

Remark A.0.4. Let us note that if Y satis�es lim inf ‖y∗+ y∗n‖q + ‖y∗‖q ≤ lim inf ‖y∗n‖q for
every weak∗ null sequence (y∗n) ⊂ Y ∗ and every y∗ ∈ Y ∗, then

dBM(Y,X) ≥ max
n∈N,ε1,··· ,εn>0

lε1 lε2 ···lεn (BX∗ )6=∅

max
x∗∈lε1 lε2 ···lεn (BX∗ )

(‖x∗‖q + εq1 + εq2 + · · ·+ εqn)1/q.

In their paper, Candido and Galego prove in fact that the Banach-Mazur distance
between C([0, ωn]) and c0 is equal to 2n+1 for every n ∈ N (see [22]). However, the value
of the Lipschitz distance seems unknown (we recall that the Lipschitz distance between
two metric spaces (M,d) and (N, δ) is the in�nimum of Lip(f)Lip(f−1) over all Lipschitz
isomorphisms f : M → N).
By combining Theorem 6.3 of [32] and classical links between the Szlenk index and the
modulus of weak∗ asymptotic uniform convexity, one can �nd a universal constant C > 0
such that the Lipschitz distance between c0 and C([0, ωn]) is bigger that C

√
n for every

n ∈ N. This is a quantitative version of the fact that c0 and C([0, ωω]) are not Lipschitz
equivalent. Let us indicate some details.
Let X = C([0, ωn]), f : c0 → X a Lipschitz bijection such that Lip(f) ≤ 1 and Lip(f−1) ≤



91

M . By Theorem Theorem 6.3 of [32], there exists a norm |.| on X such that ‖.‖X ≤ |.| ≤
M‖.‖X and

∀t ∈ [0, 1], δ
∗
|.|(t) ≥ δ

∗
c0

( t

4M

)
=

t

4M
.

Furthermore, there exists C ≥ 1 such that

∀ε ∈ (0, 1), Sz((X, |.|), ε) ≤ C
(
δ
∗
|.|
( ε
C

))−1

.

Since Sz((X, |.|), 1/2M) ≥ n+ 1, the result follows from

n+ 1 ≤ Sz((X, |.|), 1/2M) ≤ C

(
δ
∗
|.|
( 1

2MC

))−1

≤ 8M2C2.

In order to give a similar quantitative version of the fact that c0 and C([0, ωω]) are not
coarse Lipschitz equivalent, we de�ne a coarse Lipschitz écart between Banach spaces. If
X and Y are two Banach spaces, we call coarse Lipschitz écart between X and Y , the
in�nimum of A/C where A,C > 0 are such that one can �nd a map f : X → Y and
constants C,D > 0 so that

∀x, y ∈ X, C‖x− y‖ −D ≤ ‖f(x)− f(y)‖ ≤ A‖x− y‖+B.

Now, by applying this time Theorem 6.5 from [32], one gets another universal constant
C > 0 such that the coarse Lipschitz écart between c0 and C([0, ωn]) is bigger that C

√
n

for every n ∈ N.



Appendix B

Some non-linear indices

The goal of this appendix is to generalize some of the results of [10] by de�ning similar
non-linear indices that �measure� how present are Lipschitz or coarse-Lipschitz copies of
certain spaces into a given one.

Let us brie�y describe the content of this appendix. First, we will recall some de�-
nitions about trees and vines. Next, we will give two necessary and su�cient conditions
for a Polish space to contain a Lipschitz copy of `p, 1 ≤ p < ∞, in order to deduce that
`1 Lipschitz embeds into a Banach space if and only if this space contains bi-Lipschitz
copies of all re�exive asymptotic-`1 spaces. The second section will be dedicated to the
proof of similar results in a coarse-Lipschitz setting. We will conclude this appendix by
giving a characterization of the index of Lipschitz containment of `p being bigger than ω
and by raising a few questions.

Before proving our �rst propositions, in order to ease the reading, we recall some
de�nitions about trees. First, if X is a set, we will call tree over X a collection T of �nite
sequences of X such that (x1, · · · , xn) is in T as soon as (x1, · · · , xn+1) is in T for some
xn+1 ∈ X. A tree will be said well-founded if it does not contain any in�nite branch,
where an in�nite branch would be a sequence (xn)∞n=1 in X satisfying (x1, · · · , xn) ∈ T
for every n ∈ N. We will now de�ne the order of a tree T over a set X, based on the
following trans�nite derivation

T 0 = T

Tα+1 = {(x1, · · · , xn); (x1, · · · , xn, xn+1) ∈ Tα}, for any ordinal α (we allow n = 0)

T β =
⋂
α<β

Tα, for any limit ordinal β.

We de�ne the order of T , denoted o(T ), to be the least ordinal number such that
T o(T ) = ∅, with the convention o(T ) = ∞ if there is no such ordinal. One can note
that o(T ) <∞ if T is well-founded.

Let us now de�ne our indices of non-linear presence. We start with the Lipschitz
setting.

92
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B.1 Lipschitz setting

First, let us recall the de�nitions about vines, introduced in [10].
Let E = Q or E = Z. For all G ∈ [N]<ω, we denote

[E, G] = {f : N→ E; Supp(f) ⊂ G}

that can be seen as a subset of c00(N,R).
Given a set X, an E-bunch over X will be an element of the form χ = (xf )f∈[E,G] in
X [E,G]. We can endow the set of E-bunches over X with a partial order as follows. For
χ = (xf )f∈[E,F ] and ψ = (yf )f∈[E,G], we write χ � ψ if F is an initial segment of G and
yf = xf for every f ∈ [E, F ]. As for trees, we will say that a set V of E-bunches over X is
an E-vine over X if the set [ψ � χ] is a subset of V for every χ ∈ V and V will be called
well-founded if the tree (V ,�) is well-founded, i.e it contains no in�nite totally ordered
subset. Let us also de�ne the ordinal index of a vine. For a vine V , we put

V (1) = V \ {χ ∈ V ; χ is �-maximal},

and, recursively
V (α+1) = (V (α))(1), for any ordinal α

V (β) =
⋂
α<β

V (α), for any limit ordinal β.

Then, the ordinal index of V , denoted o(V ), is de�ned to be the least ordinal α such that
V (α) = ∅, which is well-de�ned if V is well-founded.

Now, for any norm ‖.‖ on c00(N,R), any C > 0 and any metric space (M,d), we denote

V‖.‖(M,E, C) =
⋃

G∈[N]<ω

{
(xf )f∈[E,G] ∈M [E,G];∀f, g ∈ [E, G],

1

C
‖f − g‖ ≤ d(xf , xg) ≤ C‖f − g‖

}

where c00(N,E) is seen as a subset of c00(N,R). We will also allow ourselves the following
notation, even though E is not a vector space:

ILip(c00(N,E),‖.‖)(M) = sup{o(V‖.‖(M,E, C)), C > 0}.

When E = Q and ‖.‖ = ‖.‖p, 1 ≤ p ≤ ∞, we will write ILip`p (M) instead of ILip(c00(N,E),‖.‖p)(M)

if p <∞ and ILipc0 (M) instead of ILip(c00(N,Q),‖.‖p)(M) if p =∞.

Let us start with the following proposition.

Proposition B.1.1. Let (M,d) be a Polish space. We have:

(c00(N,E), ‖.‖) ↪→
L
M ⇐⇒ ILip(c00(N,E),‖.‖)(M) ≥ ω1.

Proof. Assume ψ : c00(N,E)→M satis�es:

∀x, y ∈ c00(N,E),
1

C
‖x− y‖ ≤ d(ψ(x), ψ(y)) ≤ C‖x− y‖.
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for a C ≥ 1.
For all G ∈ [N]<ω, f ∈ [E, G], we put xf = ψ

(∑
i∈G f(i)ei

)
. We can see that

{(xf )f∈[E,G];G ∈ [N]<ω} ⊂ V‖.‖(M,E, C)

hence ILipc00(N,E)(M) ≥ ω1.

Assume now ILipc00(N,E)(M) = ω1.
For all countable ordinal α, there exists Cα > 0 such that o(V‖.‖(M,E, Cα)) ≥ α. We can
�nd C > 0 and an uncountable set U ⊂ [1, ω1) such that Cα ≤ C and so

o(V‖.‖(M,E, C)) ≥ o(V‖.‖(M,E, Cα)) ≥ α

for all α ∈ U . As a consequence, V‖.‖(M,E, C) is ill-founded, i.e there exists a strictly in-
creasing sequence of integers (km) and, form ∈ N∪{0}, χm = (x

(m)
f ; f ∈ [E, {k1, · · · , km}]) ∈

V‖.‖(M,E, C) so that χ0 � χ1 � χ2 · · · . This means that for every �nitely supported
f : {k1, k2, k3, · · · } → E, there is an xf ∈ M such that χm = (xf ; f ∈ [E, {k1, · · · , km}])
for m ∈ N. It remains to note that the map ψ : (c00(N,E), ‖.‖)→M de�ned by

ψ((sj)) = xf where f : {k1, k2, · · · } → E, is de�ned by f(kj) = sj

is a Lipschitz embedding to conclude.

Before proving our generalizations, let us recall the de�nition of the Schreier sets
(Sα)α<ω1 . First, if A and B are �nite subsets of N, we write n ≤ A < B if n ≤ min(A) ≤
max(A) < min(B). Now, if α is a countable ordinal, we denote by Sα ⊂ [N]<ω the Schreier
family of order α, de�ned recursively as follows:

S0 = {{n};n ∈ N},

Sα+1 =
{ n⋃
j=1

Ej;Ej ∈ Sα for all 1 ≤ j ≤ n and n ≤ E1 < E2 < · · · < En

}
,

Sβ = {A ∈ [N]<ω;∃n ∈ N, n ≤ A,A ∈ Sαn}

if β is a limit ordinal, and (αn) ⊂ [0, β) is a (�xed) sequence which increases to β (the
choice of (αn) is irrelevant).
These families naturally generate trees on N by setting

T (Sα) = {(n1, . . . , nk); {ni}ki=1 ∈ Sα}

for every ordinal α. With a trans�nite induction, one can check that its order is o(T (Sα)) =
ωα + 1 (see [3]).
Let us denote (Sα(E), d‖.‖) the subset of c00(N, E)

Sα(E) = {
∑
i∈G

ciei, G ∈ Sα, ci ∈ E}

endowed with ‖.‖ for every ordinal α.

Proposition B.1.2. Let (M,d) be a Polish space. We have:

(c00(N,E), ‖.‖) ↪→
L
M ⇐⇒ ∀α, (Sα(E), d‖.‖) ↪→

L
M.
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Proof. The direct implication is clear. Reciprocally, let us assume that M admits bi-
Lipschitz embeddings of (Sα(E), d‖.‖) for every ordinal α. After an eventuel extraction
argument, we can �nd a constant C > 0, an uncountable set A ⊂ [0, ω1), and maps
Fα : (Sα(E), d‖.‖)→M for all α ∈ A such that

1

C
‖f − g‖ ≤ d(Fα(f), Fα(g)) ≤ C‖f − g‖

for all f, g ∈ Sα(E) and α ∈ A.
Thus, as in [10], V‖.‖(M,E, C) has ordinal index at least o(Sα) = ωα + 1, for all α ∈ A, so
ILip(c00(N,E),‖.‖)(M) ≥ ω1. The result follows from the previous proposition.

Let us note a direct consequence.

Proposition B.1.3. Let (M,d) be a Polish space, 1 ≤ p <∞. Then

`p ↪→
L
M ⇐⇒ ILip`p

(M) ≥ ω1 ⇐⇒ ∀α, (Sα(Q), d‖.‖p) ↪→
L
M.

The separable re�exive Banach spaces Tα, which are the higher order Tsirelson spaces,
are asymptotic-`1 and have a 1-unconditional basis (ui) with the property that for any
ordinal α and any G ∈ Sα, the sequence (ui)i∈G is 2-equivalent to the unit vector basis of
`
|G|
1 (see [86]). It follows that the natural embedding of (Sα(E), d1) in Tα is a 4-Lipschitz
isomorphism. Thus, we have:

Proposition B.1.4. If a Banach space Y contains bi-Lipschitz copies of every re�exive
asymptotic-`1 space, then `1 Lipschitz embeds into Y .

In the case of c0, without further arguments, we can already deduce the following.

Proposition B.1.5. If a Banach space Y contains coarse-Lipschitz copies of every re-
�exive asymptotic-c0 space, then c0 coarse-Lipschitz embeds into Y .

Proof. Let Y such a Banach space. Then Y contains a coarse-Lipschitz copy of (Sα(Q), d∞)
for every α, thus Y contains a Lipschitz copy of every (Sα(Z), d∞). Hence (c00(N,Z), ‖.‖∞)
Lipschitz embeds into Y , which allows us to conclude that c0 coarse-Lipschitz embeds into
Y (see Proposition B.2.1 for a more general result).

B.2 Coarse Lipschitz setting

The previous results can be extended to the coarse Lipschitz setting via minor adjust-
ments. Let us see how.

For any norm ‖.‖ on c00(N,R), any C > 0 and any metric space (M,d), we denote

V cL
‖.‖ (M,E, C) =

⋃
G∈[N]<ω

{
(xf )f∈[E,G] ∈M [E,G];∀f, g ∈ [E, G],

1

C
‖f − g‖ − C ≤ d(xf , xg) ≤ C‖f − g‖+ C

}
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and, as before, we will allow ourselves the notation

IcL(c00(N,E),‖.‖)(M) = sup{o(V cL
‖.‖ (M,E, C)), C > 0}.

As earlier, for p ∈ [1,∞), we will use the notation IcL`p (M) instead IcL(c00(N,Q),‖.‖p)(M), as
well as IcLc0 (M) instead IcL(c00(N,Q),‖.‖∞)(M). Let us immediately note the following.

Proposition B.2.1. For any metric space (M,d), we have:

IcLc0 (M) = ILip(c00(N,Z),‖.‖∞)(M).

Proof. Let C ≥ 1. Let us start by proving that o(V‖.‖∞(M,Z, C)) ≤ o(V cL
‖.‖∞(M,Q, C)).

Let (xf )f∈[Z,G] ∈ V‖.‖∞(M,Z, C), G ∈ [N]<ω. We associate to every f ∈ [Q, G] an element
f̃ ∈ [Z, G] so that ‖f − f̃‖∞ ≤ 1

2
. Next, for every f ∈ [Q, G], we de�ne x̃f = xf̃ . To get

the inequality, it is enough to note that

d(x̃f , x̃g) = d(xf̃ , xg̃) ≤ C‖f̃ − g̃‖∞ ≤ C‖f − g‖∞ + C

and

d(x̃f , x̃g) = d(xf̃ , xg̃) ≥
1

C
‖f̃ − g̃‖∞ ≥

1

C
‖f − g‖∞ −

1

C
≥ 1

C
‖f − g‖∞ − C

for every f, g ∈ [Q, G].
Now, let (xf )f∈[Q,G] ∈ V cL

‖.‖∞(M,Q, C), G ∈ [N]<ω. There exist θ ∈ [1,∞) ∩Q and D ≥ 1

(that only depend on C) so that

∀f, g ∈ [Q, G], ‖f − g‖∞ ≥ θ =⇒ 1

D
‖f − g‖∞ ≤ d(xf , xg) ≤ D‖f − g‖∞.

For every f ∈ [Z, G], we de�ne f̃ = θf ∈ [Q, G] and x̃f = xf̃ . For every f 6= g ∈ [Z, G],
‖f̃ − g̃‖∞ ≥ θ so

θ

D
‖f − g‖∞ =

1

D
‖f̃ − g̃‖∞ ≤ d(x̃f , x̃g) ≤ D‖f̃ − g̃‖∞ = θD‖f − g‖∞.

As a consequence, we get o(V‖.‖∞(M,Z, θD)) ≥ o(V cL
‖.‖∞(M,Q, C)), which �nishes the

proof.

Proposition B.2.2. Let (M,d) be a Polish space. We have:

(c00(N,E), ‖.‖) ↪→
cL
M ⇐⇒ IcL(c00(N,E),‖.‖)(M) ≥ ω1.

Proof. Assume ψ : c00(N,E)→M satis�es:

∀x, y ∈ c00(N,E),
1

C
‖x− y‖ − C ≤ d(ψ(x), ψ(y)) ≤ C‖x− y‖+ C.

for some C ≥ 1.
For all G ∈ [N]<ω, f ∈ [E, G], we put xf = ψ

(∑
i∈G f(i)ei

)
. We can see that

{(xf )f∈[E,G];G ∈ [N]<ω} ⊂ V cL
‖.‖ (M,E, C)
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hence IcLc00(N,E)(M) ≥ ω1.
Assume now ILipc00(N,E)(M) = ω1.
For all countable ordinal α, there exists Cα > 0 such that o(V cL

‖.‖ (M,E, Cα)) ≥ α. We can
�nd C > 0 and an uncountable set U ⊂ [1, ω1) such that Cα ≤ C and so

o(V cL
‖.‖ (M,E, C)) ≥ o(V cL

‖.‖ (M,E, Cα)) ≥ α

for all α ∈ U . As a consequence, V cL
‖.‖ (M,E, C) is ill-founded, i.e there exists a strictly in-

creasing sequence of integers (km) and, form ∈ N∪{0}, χm = (x
(m)
f ; f ∈ [E, {k1, · · · , km}]) ∈

V cL
‖.‖ (M,E, C) so that χ0 � χ1 � χ2 · · · . This means that for every �nitely supported
f : {k1, k2, k3, · · · } → E, there is an xf ∈ M so that χm = (xf ; f ∈ [E, {k1, · · · , km}]) for
m ∈ N. It remains to note that the map ψ : (c00(N,E), ‖.‖)→M de�ned by

ψ((sj)) = xf where f : {k1, k2, · · · } → E, is de�ned by f(kj) = sj

is a coarse-Lipschitz embedding to conclude.

With an almost identical proof as for Proposition B.1.2, we get:

Proposition B.2.3. Let (M,d) be a Polish metric space. We have:

(c00(N,E), ‖.‖) ↪→
cL
M ⇐⇒ ∀α, (Sα(E), d‖.‖) ↪→

cL
M.

As before, let us note those two direct consequences.

Proposition B.2.4. Let (M,d) be a Polish metric space, 1 ≤ p <∞. Then

`p ↪→
cL
M ⇐⇒ IcL`p (M) ≥ ω1.

Proposition B.2.5. If a Banach space Y contains coarse-Lipschitz copies of every re-
�exive asymptotic-`1 space, then `1 coarse-Lipschitz embeds into Y .

B.3 Quantitative estimates and open problems

In this �nal section, we give a necessary and su�cient condition for ILip`p (X), ILipc0 (X),
IcL`p (X), IcLc0 (X) to be bigger than ω. The result is the following.

Proposition B.3.1. Let X be a Banach space, 1 ≤ p <∞. The following are equivalent:

(i) ILip`p
(X) > ω;

(ii) IcL`p (X) > ω;

(iii) `p is �nitely representable in X.

Similarly, ILipc0
(X) > ω if and only if IcLc0 (X) > ω if and only if c0 is �nitely representable

in X.
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Proof. ∗ The implication (i) =⇒ (ii) is clear.
∗ Assume IcL`p (X) > ω. There exists C > 0 such that

o(V(X,Q, C)) > ω where V(X,Q, C) := V cL
‖.‖p(X,Q, C)

Then
⋂
n∈N V(n)(X,Q, C) 6= ∅. Thus we can �ndG ∈ [N]<ω, (xf )f∈[Q,G] ∈

⋂
n∈N V(n)(X,Q, C).

Let k ∈ N. We can �nd s1 < · · · < sk /∈ G (we note G′ = G ∪ {s1, · · · , sk}) and xf ∈ X
for all f ∈ [Q, G′] \ [Q, G], such that {(xf )f∈[Q,G′]} ⊂ V(X,Q, C).

Then the map ϕ :

{
Qk → X
(q1, · · · , qk) 7→ xq1es1+···+qkesk

satis�es

∀q = (qi)
k
i=1, q

′ = (q′i)
k
i=1 ∈ Qk,

1

C
‖q − q′‖p − C ≤ ‖ϕ(q)− ϕ(q′)‖ ≤ C‖q − q′‖+ C.

By density, we get that the `np , n ∈ N uniformly coarse-Lipschitz embed into X. Ribe's
Theorem asserts that `p is �nitely representable in X.
∗ Finally, let us prove that (iii) =⇒ (i). Assume that `p is �nitely representable in X.
We will show that 0 ∈

⋂
n∈N V (n)

‖.‖p(X,Q, C) for some C > 0. Since `np ↪→
eL

X, there exist

C > 0 and maps (ϕn : `np → X)n such that

∀n ∈ N, ∀x, y ∈ `np , ‖x− y‖ ≤ ‖ϕn(x)− ϕn(y)‖ ≤ C‖x− y‖ and ϕn(0) = 0.

Let n ∈ N, G = {1, · · · , n}. For every 0 ≤ k ≤ n, f ∈ [Q, {1, · · · , k}], we put

xf = ϕn(f(1), · · · , f(k), 0, · · · , 0).

Then {xf , f ∈ [Q, G]} ⊂ V‖.‖p(X,Q, C), hence 0 = x0 ∈ V (n)
‖.‖p(X,Q, C).

The last assertion of the proposition follows from the exact same proof by remplacing p
by ∞.

Let us �nish this appendix by asking if these indices can be related to some existing
results.

It follows from Kalton and Randrianarivony's results [67] that `1 does not coarse-
Lipschitz embed into a re�exive AUS Banach space. The following open question is then
natural.

Problem B.3.2. Can we �nd an ordinal α < ω1 so that ILip`1 (X) ≤ α for every re�exive
(or even quasi-re�exive) AUS-able Banach space X?

Proposition B.3.1 tells us that, in case of a positive answer to the previous question,
we necessarily have α > ω.

A similar remark can be done for a result of Braga, Lancien, Petitjean and Procházka.
They proved in [20] that the dual of an AUS-able Banach space cannot coarse-Lipschitz
contain c0. Once again, it is natural to wonder the following.

Problem B.3.3. Can we �nd an ordinal α < ω1 so that IcLc0 (X∗) ≤ α for every AUS-able
Banach space X?

And once again, we can rule out a positive answer with α = ω by Proposition B.3.1.
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Aspects linéaires et non-linéaires en géométrie asymptotique des

espaces de Banach

Mots-clefs : Géométrie non-linéaire, lissité asymptotique, espaces de Banach,

graphes de Hamming, types asymptotiques

Le but de cette thèse est d'étudier la géométrie linéaire et non-linéaire des espaces de
Banach. Elle est composée de quatre chapitres et deux annexes.
Dans le premier chapitre, nous dé�nissons certaines applications non-linéaires et nous
décrivons en détails quatre propriétés di�érentes ayant pour sujet la lissité uniforme
asymptotique des espaces de Banach, notées Tp,Ap,Np, et Pp, en insistant sur les car-
actérisations par renormage.
Dans le deuxième, nous étudions essentiellement des propriétés de concentration pour des
applications lipschitziennes dé�nies sur les graphes de Hamming, ainsi que leur stabilité
par sommes d'espaces de Banach a�n de construire des premiers exemples d'espaces qui
ne sont pas quasi-ré�exifs mais admettent néanmoins une inégalité de concentration.
Le troisième chapitre est en deux parties. Une première est consacrée à l'étude du prob-
lème des trois-espaces pour Tp,Ap,Np, et Pp. La deuxième est dédiée à de nouveaux
résultats de rigidité grossièrement Lipschitz.
Dans le dernier chapitre, nous introduisons un analogue asymptotique de la Beck convex-
ité et prouvons que sa caractérisation en termes de types linéaires et représentabilité �nie
de `1 dans la théorie locale reste vraie dans le cadre asymptotique.

Linear and non-linear aspects in asymptotic geometry of Banach

spaces

Key words: Non-linear geometry, asymptotic smoothness, Banach spaces,

Hamming graphs, asymptotic types

The goal of this thesis is to study linear and non-linear geometry of Banach spaces. It
is composed of four chapters and two appendices.
In the �rst chapter, we de�ne some non-linear maps and we describe in details four
di�erent properties dealing with the asymptotic uniform smoothness of Banach spaces,
denoted Tp,Ap,Np, and Pp, insisting on the renorming characterizations.
In the second one, we mostly study some concentration properties for Lipschitz maps
de�ned on Hamming graphs, as well as their stability under sums of Banach spaces in
order to construct the �rst examples of spaces that are not quasi-re�exive but nevertheless
admit some concentration inequality.
The third chapter is in two parts. The �rst one is devoted to the study of the three-
space problem for Tp,Ap,Np and Pp. The second one is dedicated to new coarse-Lipschitz
rigidity results.
In the �nal chapter, we introduce an asymptotic analogue of Beck convexity and prove
that its characterization in terms of linear types and �nite representability of `1 in the
local theory stays true in the asymptotic setting.
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